
96-0391/UG-V452-01

USER GUIDE

VMEBUS SINGLE OR DUAL 68040/68060
SINGLE BOARD COMPUTER

Revision 1.0 December 30, 1999

(858) 452-0020 • (858) 452-0060 (FAX)
Web: www.synergymicro.com

 USER GUIDE

Copyright © 1997-1999 Synergy Microsystems, Inc.

This manual is copyrighted under Title 17 US Code of the United States Copyright Law. All rights are reserved by
Synergy Microsystems, Inc. This document may not, in whole or in part, be copied, photocopied, reproduced,
translated, scanned, or reduced to any electronic medium or readable form without the express written consent of
Synergy Microsystems, Inc.

This document contains material of a proprietary nature to Synergy Microsystems, Inc. All manufacturing, use, and
sales rights pertaining to this product are expressly reserved. Distribution of this material does not convey any
license or title under any patent or copyright. It is submitted in strict confidence to provide technical information for
purchasers of this product or for those considering the purchase of the product. Each recipient, by accepting this
document, agrees that its contents will not be disclosed in any manner or any person except to serve this purpose.

Synergy Microsystems, Inc. reserves the right to make changes to the specifications and contents in this document
without prior notification. If in doubt, users are urged to consult Synergy to determine whether any such changes
have been made.

Synergy products are not intended for use in life support systems or other applications where a failure of the
product could result in injury or loss of life. Customers using or selling this product in systems or applications
serving such a function do so at their own risk and agree to fully indemnify Synergy Microsystems, Inc. for any and
all damages arising from improper use.

This product and associated manuals are sold “AS IS” without implied warranty as to their merchantability or
fitness for any particular use. In no event shall Synergy Microsystems, Inc. or anyone involved in the creation,
production, or delivery of this product be liable for any direct, incidental, or consequential damages, such as, but
not limited to, loss of anticipated profits, benefits, use, or to data resulting from the use of this product or
associated manuals or arising out of any breach of warranty. In states that do not allow the exclusion or limitation
of direct, incidental, or consequential damages, this limitation may not apply.

Synergy™, V452 Series™, V4xx Series™, V30 Series™, V20 Series™, R452™, and EZ-bus™ are trademarks of
Synergy Microsystems, Inc..

Synergy wishes to acknowledge that the names of products and companies mentioned in this manual are
trademarks of their respective manufacturers.

PRINTED IN THE USA

Manual overview
This manual is divided into the following sections that can be identified
by an icon appearing on the upper outside corner of each page.

1 – Overview describes the
models, options, features
architecture, specifications and
revisions made to V452 Series
boards.

7 – Warranties & Service pro-
vides complete information
about Synergy product
warranties and service.

2 – Getting Started contains
procedures for installing V452
Series hardware and hardware
options.

Appendix A — Cables &
Connectors describes the
V452 cables and connectors.

3 – Board Facilities describes
board-level functions and
options including the ad-
dresses, interrupts, jumpers,
control registers and default
conditions.

Appendix B — Specifications
lists the V452 specifications.

4 – Local Components de-
scribe the operation of local
bus components including the
microprocessor, CPU mailbox,
watchdog, RAM, and
timer/counters.

Appendix C — Board Revision
Summary summarizes the
V452 change history.

5 – Interface Options de-
scribe the on-board circuitry
that communicates with ex-
ternal devices including the
EZ-bus, the serial I/O inter-
face, the VMEbus interface
and the System Controller.

C

A
B Glossary & Index defines

terms used in the manual and
provides an alphabetically
arranged index.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

6 – Code Examples contains
programming examples for
selected V452 Series compo-
nents or processes.

Each manual includes the V452 Series Quick
Reference Card which lists the in-formation
you‘re likely to need for day-to-day use in a
convenient shirt-pocket size.

ii V452 User Guide

Table of contents
Preface .. vii

Manual revision summary... x

Section 1, Overview

V452 Series features .. 1-3
Physical configuration .. 1-5
Functional block diagram .. 1-6
Feature summary... 1-7

Comparison: V440/V460 and V452 SBCs.. 1-11

Section 2, Getting Started

Minimum system requirements ... 2-3

Installing a monitor PROM ... 2-7

Installing the R452/R453 memory module... 2-13
Installing/upgrading the R452/R453 memory module ... 2-15

Setting up the V452 Series hardware... 2-17
Default configuration ... 2-18
Configuration tasks ... 2-18

Enable/Disable Flash write ... 2-20
Set the VMEbus request level ... 2-21
Enable VME Slave remote reset.. 2-22
Select Round Robin or Priority request handling.. 2-23
System controller ... 2-24
Boot select, EPROM or onboard Flash ... 2-25

Installing V452 Series CPU boards ... 2-27
Power-on banners ... 2-30

Setting up the V452 Series software .. 2-35
Default (pre-initialization) conditions .. 2-36
Initialization tasks .. 2-38

Section 3, Board Facilities

Address map .. 3-3

Interrupts .. 3-7
Interrupt vectors .. 3-7
Enabling/disabling interrupts .. 3-9
Interrupts on single vs. dual processor boards ... 3-11
On-board interrupt sources... 3-12
Local bus timeout ... 3-19
VMEbus interrupt handler ... 3-19
Configuring the VMEbus interrupter/resetter ... 3-22

Jumpers, switches, LEDs & Fuses... 3-25
Jumpers ... 3-26
Front panel.. 3-29
8-bit ID switch (front panel) .. 3-30
Toggle switches ... 3-31

Table of contents

V452 User Guide iii

LEDs ... 3-32
Fuses .. 3-35

V452 Series internal registers... 3-37
Status register... 3-38
ID status register ... 3-39
Mode registers... 3-40

Using Mode register functionsPrimary & Extended Mode registers....... 3-41
Controlling the User LEDs ... 3-42

2692 mode registers... 3-45
VME interrupt vector register... 3-49
Control registers .. 3-50

Primary & extended control registers.. 3-51
Interrupt control registers .. 3-52
Slave interface control register ... 3-54
Ethernet/VMEbus control registers .. 3-55

Board information registers .. 3-55
Slot ID, FE39 0001 .. 3-56
CPU & board type, FE39 0003 ... 3-57
Memory size and installed options, FE39 4003 .. 3-57
Modifications and ECO level, FE39 8003 .. 3-58
PCB revision, FE39 C003 ... 3-58

Default & reset conditions .. 3-59
Default conditions .. 3-59
Reset sources ... 3-61
Reset sequence ... 3-63
Reset via software... 3-65

VME Level 0 interrupt reset ... 3-65
Watchdog timer enable.. 3-66
Remote reset register .. 3-67

Section 4, Local Components

68040 CPU .. 4-3
Introduction.. 4-3
Additional 68040 documentation ... 4-4
Programming model ... 4-8
Instruction set overview .. 4-14
Exception processing ... 4-16
Operand transfer types.. 4-23
Bus snooping.. 4-24
Memory management unit ... 4-27

68060 CPU .. 4-31
Introduction.. 4-31

Additional 68060 documentation.. 4-33
Programming model ... 4-33

Programmer’s model differences: 68060 vs. 68040.................................. 4-35
Data type differences: 68060 vs. 68040 .. 4-36
Addressing mode differences: 68060 vs. 68040 .. 4-37

Instruction set overview .. 4-37
Integer unit ... 4-39
Exception processing ... 4-40

Exception differences: 68060 vs. 68040 .. 4-41

Table of contents

iv V452 User Guide

Instruction and data caches .. 4-43
Cache differences: 68060 vs. 68040... 4-43
Cache organization ... 4-44
Cache coherency ... 4-45
Setting up the 68060 caches... 4-45

Paged memory management unit (PMMU).. 4-48
PMMU differences: 68060 vs. 68040 ... 4-48
PMMU architecture summary... 4-49

CPU Mailbox ... 4-51
Mailbox memory areas .. 4-51
Mailbox interrupts ... 4-53

CPU Watchdog ... 4-57

Dynamic RAM... 4-63
DRAM access optimization .. 4-63
DRAM tuning strategies... 4-64
Memory parity ... 4-65

Clearing the parity error bit ... 4-68
Detecting & isolating bad parity ... 4-68

Multi-port memory contention ... 4-69
DRAM address decoding .. 4-70
R452/R453 memory modules.. 4-72

EPROM ... 4-73
Selecting the monitor EPROM type.. 4-74
Flash EPROM configuration .. 4-75
EPROM use .. 4-76
Flash considerations.. 4-77

Flash memory module ... 4-79
Installing the Flash module option .. 4-80
Accessing the Flash module.. 4-82

Block organization... 4-82
Flash considerations.. 4-83

Onboard flash memory ... 4-85
Introduction.. 4-85
Writing and erasing .. 4-86

Block organization... 4-86
Booting from onboard Flash ... 4-87

Timers & counters... 4-89
16-bit timers (2692) .. 4-91

Clock calendar.. 4-101

Non-volatile 8K x 8 SRAM... 4-105
Replaceable battery ... 4-106

Section 5, Interface Options

Asynchronous serial interface .. 5-3
P2 access to serial interface.. 5-6

Ethernet 10Base-T interface option... 5-7
Introduction.. 5-7
Ethernet network connections ... 5-9

Table of contents

V452 User Guide v

Ethernet ID .. 5-11
Avoiding bus contention — CSMA/CD... 5-11

Interchange signals ... 5-12
Address map .. 5-13
Interrupts and vectors .. 5-13

EZ-bus interface .. 5-15
EZ-bus modules ... 5-16
EZ-bus connectors .. 5-18

VME Slave interface ... 5-21
Setting up the VME Slave interface ... 5-22

Configuring Slave write access memory protection 5-24
Enabling/disabling the Slave interface .. 5-31
Multi-port memory access contention ... 5-32
VME Slave block transfer (BLT).. 5-33

Data broadcasting .. 5-35
Hardware setup for data broadcasting .. 5-36
Setting up data broadcasting groups .. 5-37
Enabling/disabling data broadcasting ... 5-40
Configuring a sample data broadcast group ... 5-41

VME Master interface .. 5-47
Setting up the Master interface ... 5-47
VME Master data transfer bandwidth... 5-51

VME Master BLT ... 5-53

System Controller ... 5-65
Forcing system controller .. 5-66
Configuring the bus arbiter ... 5-66

VMEbus arbitration timeout .. 5-67
Configuring the bus error timeout interval .. 5-67
Enabling VME SysFail interrupts ... 5-68

Section 6, Code Examples

Programming differences.. 6-3

Block transfer (BLT) with DMA example ... 6-5

Flash EPROM programming tools... 6-15

Timer code examples .. 6-25

2692 DUART code example ... 6-33

Section 7, Warranties & Service

Warranty terms & options .. 7-3

Customer service .. 7-5

Table of contents

vi V452 User Guide

Appendices

Appendix A, Cables & Connectors ... A-1
VMEbus connectors (P1 & P2) ... A-3
EZ-bus connectors (P3 & P4) .. A-5
Memory module connectors (P9, P10 & P11) ... A-7
Ethernet 10Base-T connector (P8).. A-11
Asynchronous serial connectors (P5–P7) ... A-13
Serial I/O cabling options... A-15
P2 serial interface option ... A-29

Appendix B, Specifications ... B-1
VMEbus compliance... B-1
Physical dimensions .. B-1
Weight ... B-1
Power requirements .. B-2
Operating environment ... B-2
Number of slots... B-2
Board layout ... B-3

Appendix C, Board Revision Summary... C-1

Glossary & Index

Glossary .. Glos-1

Index ... Indx-1

V452 User Guide vii

Preface
This manual provides detailed information on how to install, configure,
and operate the V452 Series of single-board computers (SBCs). This
chapter will help you use the contents of this document to your best
advantage. It is designed to help you:

evaluate the V452 Series for purchase:
To aid your buying decision, the Overview contains pertinent
information to help you determine if the V452 Series meets the
needs of your system design. These chapters include technical
descriptions, a list of features, and general specifications.

start up your V452 Series board:
Getting Started contains the information you need to install your
system for the first time. It outlines minimum system
requirements, configuration checklists and installation
procedures.
For previous customers of Synergy CPU boards, the Getting
Started section also includes a chapter that highlights new
product features and describes the primary operational
differences between V452 Series boards and Synergy's V30
Series and V20 Series boards.

answer technical questions about the V452 Series:
The Board Facilities, Local Components, and Interface Options
sections form an in-depth reference for using the V452 Series
and peripherals.
Often-used information is included in a pull-out V452 Series
Quick Reference Card.

Typographical conventions
This manual observes the following conventions:

➊ The term V452 Series is used in conjunction with information
that applies to ALL models of the board series. When differences
among models exist, specific model numbers are used to
described any special features.

➋ In diagrams and descriptions in this manual, signal names fol-
lowed by a backslash (\) are active low.

Preface

viii V452 User Guide

Related publications
Special attention has been paid to making this manual as complete as
possible to minimize the number of times you may need to reference
other manuals. However, should you need additional information, the
following books expand on several related topics:

Synergy publications

V4xx Series 68040 VME Single Board Computer User guide — de-
scribes the features, installation, and operation of Synergy’s V4xx
Series of CPU boards.

V30 Series 68030 VME Single Board Computer User guide — de-
scribes the features, installation, and operation of Synergy’s V30
Series of CPU boards.

V20 Series 68020 VME Single Board Computer User guide — de-
scribes the features, installation, and operation of Synergy’s V20
Series of CPU boards.

Datasheet Supplement, VME CPU Version — contains reprints
of selected portions of the manufacturer’s datasheets for major
components used on Synergy VME SBCs. Each included
datasheet appears in the Datasheet Supplement courtesy of their
respective manufacturers.

EZ-bus Designer’s Guide — describes the functions and specifi-
cations of the Synergy EZ-bus. All Synergy VMEbus SBCs include
two EZ-bus connectors allowing the connection of up to two EZ-
bus interface or I/O modules. This manual describes all of the
available daughter modules and the necessary mechanical and
interface information required to create new modules that are
compatible with the EZ-bus.
SMon User Guide — describes Synergy’s monitor PROM and
application development/debugger software. SMon provides a
powerful cross-plaform development environment with full
support for host/target communication over a TCP/IP Ethernet
network.

Preface

V452 User Guide ix

IC manufacturer's publications

M68060 Microprocessor User's Manual; Rev. 1; Motorola —
(520) 994-6561.
MC68040 Enhanced Microprocessor User's Manual; 2nd Edi-
tion; Prentice Hall or Motorola — (520) 994-6561.

MC68000PM/AD, MC68000 Programmer’s Reference Manual;
Prentice Hall or Motorola — (520) 994-6561.

MC68881/MC68882 Floating Point Co-processor User's Manual;
2nd Edition; Prentice Hall or Motorola.

VMEbus specification & publications

The VMEbus Specification; Rev D.1; VMEbus International
Trade Association (VITA) — (602) 951-8866.
The VMEbus Handbook; 2nd Edition; VMEbus International
Trade Association (VITA) — (602) 951-8866.

Software manufacturer's publications

pSOS+/68k Evaluation Package User's Guide; Software
Components Group; — (408) 437-0700.
Using Professional OS9, Microware Systems Corporation
VxWorks Reference Manual; Version 5.1; Wind River Systems;
— (800) 545-WIND.

x V452 User Guide

Manual revision summary
Revision level Revision date Section Affected chapter/description

1.0a 12/21/96 1st preliminary release

1.0b 3/26/97 2nd preliminary release

1.0c 1/8/99 3rd preliminary release

Section 3/Corrected configuration jumper information for
Flash Boot.

1.0d 5/24/99 4th preliminary release

Section 0, Section 9/Revised for new telephone area code.

1.0 12/30/99 Initial GA release.

V452 User Guide 1-1

Overview

The following chapters introduce the V452 Series of single-board
computers.

V452 Series features

Comparison: V440/V460 and V452

1-2 V452 User Guide

Section 1: Overview

V452 Series models & features

V452 User Guide 1-3

V452 Series features

The V452 Series are high-performance, VMEbus-compatible single
board computers (SBCs) using single or dual Motorola MC68040 or
MC68060 microprocessors. The general component side layout of the
V452 SBC is shown below.

8-bit ID Switch

Abort/Reset Switches

LED Indicators

Serial I/O Ports

10Base-T Ethernet Port

Memory module (R452/R453)

Replaceable Battery
NVRAM/Clock/Calendar

EZ-bus Module Sockets

V452 Series single board computer

Section 1: Overview

V452 Series models & features

1-4 V452 User Guide

The V452 Series offers flexibility and performance to satisfy a wide
range of applications. Standard features include low power operation,
Bellcore/Nynex compliant design, auto system controller, and VME64
extensions support.

The V452’s EZ-bus interface is a high-performance daughter module
bus that supports DMA burst accesses to motherboard memory. The
EZ-bus interface affords valuable configuration flexibility for your system
designs. All necessary signals and a 32-bit data bus are provided to
implement many optional features including:

VSB interfaces
Ethernet, SCSI and/or serial interfaces
custom P2 I/O
multiple serial ports and other uses

Standardized and custom-designed daughter modules are also available
providing true single-board solutions for a wide range of processing and
interface needs. The V452 is provided with an enhanced EZ-bus that
accommodates PCI bus-based devices on the EZ-bus module. This
broadens the range of EZ-bus solutions to meet the requirement of
most any application.

A full line of system monitor, kernal, and operating system software/
firmware is also available from Synergy and leading developers.

Section 1: Overview

V452 Series models & features

V452 User Guide 1-5

Physical configuration

The V452 SBC uses a 6U VME form factor. Onboard connectors are
used to attach modular memory and I/O options (EZ-bus modules).
Four RJ-45 jacks are mounted on the front panel; one is for the optional
Ethernet 10Base-T port with the remainder providing 4 serial ports
(serial ports B and D share a jack). Also on the front panel are abort &
reset switches, 16 status LEDs, and a readable 8-bit DIP switch.

VME P1

VME P2

8-bit
DIP EPROM

(2)

EZ-bus connectors

'040/'060

'040/'060

Optional Ethernet 10Base-T

Serial Port C
Serial Ports B & D

Serial Port A

Abort/Reset switches

Status LEDs

8-bit Readable Switch

Optional
EZ-bus Modules

Memory Module
R452: 4/8/16MB; R453: 16/32/64/128/256/512MB

EDO DRAM

Replaceable
Clock/Calendar Battery

Module B

Module A

V452 configuration

Section 1: Overview

V452 Series models & features

1-6 V452 User Guide

Functional block diagram

The figure below shows the functional block diagram for the V452 SBC.

P2

Battery

Auto
System
Controller

VMEbus

8KB
NonVolatile

SRAM

Mailbox

Data

Address

RS232
RS422
RS423

OPTIONAL

Status
LEDs (8)

Flash
EPROM
2/4/8MB

8-bit
EPROM

Sockets (2)EZ-bus
Interface

Clock /
Calendar

16-bit
Counters

(3)
82C54

Readable
ID/Option
Registers

2692

16-bit
Timers (2)

Serial (4)
2692

DUARTS

82596CA

Ethernet
10Base-T

OPTIONAL

OPTIONAL

68040/68060
CPU-Y

BLT 64 /
BLT 32
Control

VME InterfaceSlave
Master Interrupter

Interrupt
Handler

4, 8, 16, 32, 64, 128, 256 or 512

Megabytes

EDO DRAM

Upgradable Memory Module

BLT
DMA

Optional EZ-bus Modules (2)

Ethernet, SCSI, Serial,

VSB, T1, E1, HSC, GPIB,

Parallel, and more...

8-bit
ID Port

Prog.
LEDs (8)

68040/68060
CPU-X

V452 functional block diagram

Section 1: Overview

V452 Series models & features

V452 User Guide 1-7

Feature summary
The V452 Series provides the following list of powerful features and
functions that are common to all of the boards in the V452 Series
product line:

CPU

Motorola 68040 32-bit CPU(s) featuring 16 32-bit registers,
independent internal 4KB instruction & data caches, a 19/25
MIPS processor core, a built-in 3.6/4.7 MFLOPS floating-point
and integer coprocessor, and a 25/33 MHz CPU clock speed.

Motorola 68060 32-bit CPU(s) featuring a RISC-like
architecture that includes branch prediction logic and
superscalar pipelines. The ‘060 is user object code compatible
with the 68040 and all previous 68K processors. Compatibility is
assured through the use of dual ‘040-compatible CPU integer
cores, an ‘040-compatible floating point core, 8KB instruction
and data caches, an ‘040-compatible paged memory
management unit, and bus controller. The processor runs
internally at 50/66 MHz with external bus operation at 25/33
MHz.

Memory

4, 8, 16, 32, 64, 128, 256 or 512 MB of EDO dynamic RAM
with a 32-bit data path on modular daughter modules for
configuration flexibility and for easy memory upgrades in the
field.

Support for the 68040 optimized burst mode.

EDO DRAM (Extended Data Out DRAM) reduces DRAM cycle
time yet provides valid data for much longer time for increased
read/write access performance over conventional DRAM
designs.

Two independent 32-pin EPROM sockets provide up to 2 MB of
PROM Monitor space consisting of EPROM, FLASH EPROM or
a combination of these devices. These sockets also accept
special modules that provide up to 16 MB of Intel FlashFile™
memory in addition to the normal 1 MB space allocated for the
boot EPROM.

Optional 2/4/8 MB of onboard Intel FlashFile™ memory.

Section 1: Overview

V452 Series models & features

1-8 V452 User Guide

Construction

Bellcore/Nynex-compliant construction.

Ruggedized option (single CPU only) available.

Optional conformal coat.

VMEbus

BLT64 Master/Slave Block Transfers (BLT) DMA to 72 MB/sec
supporting VME Specification Revision D.1.

BLT32 Master/Slave Block Transfers (BLT) DMA support for
transfers up to 33 MB/sec.

Supports the bus snooping for write accesses to local memory
via the VMEbus Slave interface.

VME interface supports A32/24/16 and D32/16/8 in Master
mode; A32/24 and D32/16/8 in Slave mode.

VMEbus requester supports Release-When-Done (RWD) or
Release-On-Request (ROR) for bus release and FAIR bus request
arbitration.

VMEbus priority request level is software or jumper-selectable at
4 different priority levels.

Automatic System Controller lets the SBC configure itself
automatically as the System Controller when installed in slot 1.
The System Controller provides prioritized and/or round-robin
arbitration, bus arbiter timeout, and a programmable VMEbus
grant timeout period. The System Controller is isolated for
continued operation in the unlikely event of a failure elsewhere
on the board. The System Controller circuit is able to assert the
VMEbus Reset signal under software control without causing a
local reset of itself. A jumper is provided to disable the automatic
System Controller feature to ensure compatibility with other
boards in the system.

Software programmable VME Slave interface featuring a Slave
access window size equal to installed memory that can be
assigned to any location within the entire 4 GByte VME address
space.

Supports unaligned VMEbus transfers.

Software-controllable data broadcast mode for simultaneous
data transfers to multiple VME Slaves.

Section 1: Overview

V452 Series models & features

V452 User Guide 1-9

Supports remote reset under software control by a remote VME
Master.

Standard 6U VME card format with VMEbus P1 and P2
connectors.

VME64 extensions

Supports Auto System Controller.

Supports readable System ID and configuration.

Optional wide 160-pin P1 and P2 connectors for VME64 style
I/O and 3V Vcc backplane.

Interrupts

Software-controllable interrupt reception for on-board interrupt
sources via programmable register.

Programmable interrupt level assignments for on-board
interrupt sources via a socketed Programmed Array Logic (PAL)
device.

VMEbus interrupter can assert interrupts at any level under
software control.

VME interrupt handler for any group of up to 7 VMEbus inter-
rupt priority levels.

Interrupt-driven CPU Mailbox for inter-CPU and inter-process
communications.

Remote reset via VME writeable register.

Watchdog timer can reset board if software hangs or halts.

Local bus time-out circuit asserts a local bus error to the CPU
when individual data transfers across the local bus take longer
than 30 microseconds.

Section 1: Overview

V452 Series models & features

1-10 V452 User Guide

Peripherals

Four RS-232/RS-423 single-ended, or 2 RS-422A differential and
2 RS-232/RS-423 single-ended serial channels for asynchronous
serial communication up to 38.4K baud terminating in three RJ-
45 10-pin connectors on the front panel.

Optional onboard 10Base-T Ethernet port.

EZ-bus daughterboard interface is provided for custom P2 I/O,
including VSB, memory expansion, SCSI, Ethernet, or high-speed
floating point coprocessor. Synergy offers a standard set of off-
the-shelf boards or can custom design for specialized needs.
Customers may design their own daughter modules by using the
EPRO/VPRO prototype board and the EZ-bus Designer’s Guide,
both available from Synergy. The V452 EZ-bus interface supports
PCI-like initiator-throttled DMA accesses.

System timer/counter facilities

Five 16-bit counter/timers with interrupt support. The two
timers from the two 2692 chips feature prescalers. The three
counters from the 82C54 chip allow on-the-fly counter readings.

Time-of-day clock/calendar with 8KB of non-volatile RAM for
general use and with user-replaceable battery.

User interface

Eight front panel user-programmable LEDs indicating application
events and conditions.

Eight front panel status LEDS indicating the HALT and/or SysFail
status of the on-board CPUs, whether the V452 Series board is
currently operating as the VMEbus Master, or whether an on-
board CPU(s), EZ-bus module or an external VMEbus Master is
in control of the local bus.

RESET toggle switches can assert a CPU, board, and/or VMEbus
level RESET signal; nmi ABORT switch for each on-board CPU.

Front panel Link and Transmit status LED indicators for optional
onboard 10Base-T Ethernet port.

Eight position software-readable ID switch for processor identifi-
cation or option selection.

Section 1: Overview

Comparison: V440/V460 and V452 SBCs

V452 User Guide 1-11

Comparison: V440/V460 and
V452 SBCs

For information reference, this chapter summarizes key differences
between the Synergy Microsystems V440/V460 and V452 SBCs.

Memory Architecture

V440/V460 — maximum of 64MB w/double-stacked memory
module using EDRAM chips

V452 — maximum of 512MB w/quad-stacked memory module
using EDO DRAM chips

Low Power

V440/V460 — not originally designed for low power

V452 — designed from ground up for low power

EZ-bus interface

V440/V460 — conventional (non-enhanced) EZ-bus

V452 — enhanced EZ-bus; accommodates PCI-bus based chips
on EZ-bus module for wider selection of I/O options

Flash

V440/V460 — optional Flash EPROM option (512KB max.) or
Flash memory module (DELF/DEFL) up to 16MB

V452 — optional onboard 2/4/8MB Flash or Flash memory
module (DELF/DEFL) up to 16MB

Section 1: Overview

Comparison: V440/V460 and V452 SBCs

1-12 V452 User Guide

RTC NVRAM and Battery

V440/V460 — 2KB NVRAM; battery not user replaceable

V452 — NVRAM, 8KB (user-selectable) or 2KB (default) for
compatibility with pre-V45x SBCs; battery user replaceable

Bellcore/Nynex compliance

V440/V460 — not compliant

V452 — compliant (no parts on rear, no parts under parts, no
dissimilar metal connectors, minimal use of sockets and jumpers)

Ethernet interface

V440/V460 — needs optional EZ-bus module support for AUI,
10Base-2, 10Base-T

V452 — optional onboard 10Base-T port accessible from front
panel and P2 user I/O

CPU Support

V440/V460 — single or dual '040 or '060 (provided as V450)

V452 — single or dual '040 or '060

Ruggedized

V440/V460 — not available

V452 — option available for single CPU boards only

Auto System Controller

V440/V460 — not available

V452 — comes standard

VME64 extensions support

V440/V460 — not available

V452 — comes standard with auto system controller and
readable system ID; wide (160-pin) P1/P2 available as option

Section 1: Overview

Comparison: V440/V460 and V452 SBCs

V452 User Guide 1-13

Conformal coat

V440/V460 — not available

V452 — available as option

Front panel with EMI shielding

V440/V460 — not available

V452 — available as option

Readable board information register

V440/V460 — not available

V452 — comes standard (indicates slot ID; CPU and board type;
memory size and installed options; Mods/ECO level; and PCB
revision)

VMEbus request level

V440/V460 — jumper selectable

V452 — jumper and software selectable

Serial I/O via P2 connector

V440/V460 — supported (TxD, RxD, and handshaking signals)

V452 — supported (TxD and RxD signals only)

Section 1: Overview

Comparison: V440/V460 and V452 SBCs

1-14 V452 User Guide

V452 User Guide 2-1

Getting
 Started

2
This section provides configuration, setup and general information for
the V452 SBC.

Minimum system requirements

Installing a monitor EPROM

Installing the R452/R453 memory module

Setting up the V452 Series hardware

Installing V452 Series CPU boards

Setting up the V452 Series software

2-2 V452 User Guide

Section 2: Getting Started

Minimum system requirements

V452 User Guide 2-3

Minimum system requirements

The following system components are required to install and test V452
Series boards:

6U VMEbus-compatible card cage with P1 backplanes installed
— A card cage with forced air cooling is required. In addition, if
64 or 32-bit addresses or 64 or 32-bit (BLT or D32) data transfers
are to be used, a P2 backplane must also be installed.

V452 Series boards feature state-of-the-
art, high-speed, transfers across the VME-
bus that in some cases may approach the
maximum VME specifications for transfer
speeds. As a result, to support these
transfers the underlying connectors,
circuitry, and PCB boards used in the
VME card cage must be constructed of
high-quality materials that are fully-com-
pliant with VME specifications.

For example, VME card cages containing
10-layer, PCB boards are normally re-
quired to support high-speed VME trans-
fers. Older style, card cages containing
6-layer boards may have some difficulty
conducting these signals without generat-
ing excessive noise.

Section 2: Getting Started

Minimum system requirements

2-4 V452 User Guide

Pin row B of the P2 backplane is defined
by VMEbus specifications and is bussed
across the entire backplane. Pin rows A
and C are user configured and, if con–
nected at all, are normally connected to
adjacent slots via wirewrap or special ca-
bles.

Because the P2 pinout may vary between
backplanes or even slots in the same
backplane, DO NOT INSTALL the V452
Series into a system slot whose P2
backplane is not compatible with the
V452 Series’ P2 pinout. Failure to
observe this warning can cause the
complete destruction of many on-board
components and also voids the product
warranty.

The V452 Series pinout meets standard
VME specifications for row B, but rows A
and C will vary according to the EZ-bus
daughterboard installed. Daughterboard
pinouts are shown in the associated
daughterboard manual . I f no
daughterboard is present, P2 backplane
rows A and C are defined as no-
connects.

For a complete list of the V452 Series P2
assignments, see the VMEbus connectors
(P1-P2) chapter in Appendix A.

Power supply — Standard V452 Series boards require the
following power supply voltage levels:

V452 single processor, typical power consumption:
‘040/33 MHz with 16MB DRAM:

+5.0v ±5% = 3.4 Amps
-12.0v ±5% = 30 mA

‘060/50 MHz with 16MB DRAM:
+5.0v ±5% = 3.0 Amps
-12.0v ±5% = 30 mA

Section 2: Getting Started

Minimum system requirements

V452 User Guide 2-5

V452 dual processor, typical power consumption:
‘040/33 MHz with 16MB DRAM:

+5.0v ±5% = 4.1 Amps
-12.0v ±5% = 30 mA

‘060/50 MHz with 16MB DRAM:
+5.0v ±5% = 3.8 Amps
-12.0v ±5% = 30 mA

Ensure that the power supply is capable
of meeting the above requirements plus
the requirements of any additional
boards in the system. An extra 20%
margin of current capacity should be
factored in for safety.

One modular serial I/O cable (and Modular-to-D adapter if
necessary) — The serial ports on V452 Series boards use 10-pin
modular telephone-type (AT&T) connectors. A Modular-to-D
adapter is required to connect the modular jacks to serial de-
vices (e.g, terminals) that have D-type serial connectors.
Additionally, the use of both Serial Ports B and D require the use
of a special adapter. Refer to the Serial cabling options chapter
in Appendix A.

RS-232 compatible video display terminal

Section 2: Getting Started

Minimum system requirements

2-6 V452 User Guide

Section 2: Getting Started

Installing a monitor PROM

V452 User Guide 2-7

Installing a monitor PROM

V452 Series boards provide two, 32-pin, 8-bit, DIP EPROM sockets that
can accept any combination of the following devices:

27C010 1 Mbit EPROM (128 KB)

27C020 2 Mbit EPROM (256 KB)

27C040 4 Mbit EPROM (512 KB)

27C080 8 Mbit EPROM (1 MB)

28F010 1 Mbit Flash EPROM (128K x 8, 256 KB)

28F020 2 Mbit Flash EPROM (256K x 8, 512 KB))

Normally, all boards ship from the factory with the appropriate monitor
PROM already installed, however new or updated PROMs can also
easily be added or changed in the field.

The paragraphs below describe a field installation of a new EPROM and
all of the potential configuration changes you may need to make to the
V452 Series CPU board as a result:

Note If the desired monitor PROM(s) is(are) al-
ready present on the V452 Series board,
proceed to the next chapter in this
section.

If the optional Flash memory module is to
be installed instead of EPROM(s), or for
information about the Flash memory
module itself, see the Flash memory
module chapter in Section 4.

Section 2: Getting Started

Installing a monitor PROM

2-8 V452 User Guide

Materials
To complete this procedure, you will need the following materials:

The desired monitor firmware PROM(s),

A chip extractor tool to remove the current PROM (if necessary),

The manual for the software product on the new EPROM.

Procedural steps
To install a monitor EPROM, complete the following procedure:

➊ Verify proper operation of the motherboard (if replacing an ex-
isting monitor PROM) — Before attempting to install a new
EPROM on an existing board, consider checking that the moth-
erboard (and any attached daughterboards) are operating
properly by performing the installation/checkout procedure for
the V452 Series board as described later in this section.

V452
Component

side

P1P2

P3 (EZ-bus module connector)

P4 (EZ-bus module connector)

CPU-X

CPU-Y
(Optional)

P5 P6 P7 P8

Empty Monitor
Socket

EPROM1
(CPU-Y)

Empty Monitor
Socket

EPROM0
(CPU-X)

P9 P10

P11

JK12 JK17

UG13

UJ13

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

Monitor EPROM sockets and jumpers on V452 Series boards

Section 2: Getting Started

Installing a monitor PROM

V452 User Guide 2-9

Note The black triangle near the jumper block
and connectors points to pin 1.

➋ Power-down and remove the CPU motherboard from the card
cage (if necessary) — Power-down the system and remove the
V452 Series CPU board from the card cage.

Synergy CPU motherboards contain
static-sensitive devices. Make sure you
are properly grounded (by putting on a
ground-strap, touching the system power
supply, etc.) before removing and han-
dling the board.

➌ Locate the current monitor PROM(s) or sockets on the CPU
board and remove the current monitor PROM (if necessary) —
The figure on the previous page shows the location of the moni-
tor PROM socket(s) and the monitor PROM configuration
jumpers on V452 Series boards

➍ Install the EPROM — Install the PROM in the appropriate
socket. The PROM socket(s) on Synergy boards accept 32-pin
PROM devices. The figure below shows the orientation of each
PROM after proper installation.

To P1 and P2
connectors

To front
panel

Pin 1

Empty Monitor
Socket

Empty Monitor
Socket

PROM 1
(CPU Y)

PROM 0
(CPU X)

EPROM devices properly installed in sockets

Section 2: Getting Started

Installing a monitor PROM

2-10 V452 User Guide

➎ Select the Monitor PROM type (if required) — V452 Series
boards provide two independent 32-pin, 8-bit sockets typically
used for system firmware. These two sockets can accept 1 Mbit -
8 Mbit EPROM chips, 512 KB of Flash EPROM or a combination
of these devices.
To indicate what type of PROM device is installed in each
socket, configure the JK12 jumper as shown in the figure below:

PROM 0
Control

Flash
 EPROM
Installed

Normal
EPROM
Installed

Flash
EPROM
Installed

Normal
EPROM
Installed

PROM 1
Control

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

EPROM type jumper settings (JK12)

One of the shunt configurations shown
above must be in place for proper opera-
tion of each PROM installed on the
board.

Check the configuration of JK12
whenever a new EPROM or Flash PROM
is plugged into the board.

➏ Enable/disable Flash EPROM writes (if required) — Flash EPROM
can be programmed using circuitry on the motherboard, allowing
firmware code maintenance and updates to be performed across a net-
work. If Flash EPROM has been installed on the board as described in
Step ➎ above, configure the JK17 jumper as shown in the figure below:

Section 2: Getting Started

Installing a monitor PROM

V452 User Guide 2-11

Flash EPROM W rite Enable/Disable

* Jumper must be installed as shown to disable writing.

Disable*

1 2

3 4

5 6

Enable*

1 2

3 4

5 6

Flash EPROM Write enable/disable jumper settings (JK17)

Note Enabling Write enable function allows
Flash EPROM writing to occur but does
not actually start the process. For this ac-
tivity to occur, a series of other software
instructions must be executed which ap-
ply various power and data signals to the
Flash EPROM chip.

For more information about on-board
programming of Flash EPROM devices,
see the datasheet for the Flash EPROM
devices in the datasheet for the 28F010
Mbit Flash EPROM datasheet in the
Datasheet Supplement supplied with this
manual. The programming sequence de-
scribed in this datasheet can be applied
to both the 28F010 and the 28F020 de-
vice types. Also refer to the EPROM
chapter in Section 4 and the Flash
EPROM programming tools chapter in
Section 6.

If Flash EPROM is installed in either or both of the PROM sockets, one
of the shunt configurations shown above must be in place for proper
operation. If Flash EPROM is not installed, no jumper is necessary.

To verify the proper operation of the newly installed EPROM, perform
the procedure as described in the Installing V452 Series CPU boards
chapter in this section.

Section 2: Getting Started

Installing a monitor PROM

2-12 V452 User Guide

Section 2: Getting Started

Installing the R452/R453 memory module

V452 User Guide 2-13

Installing the R452/R453
memory module

V452 Series boards provide all on-board DRAM on upgradable memory
modules. Modules are available with the following amounts of DRAM:

4 MB

8 MB

16 MB

32 MB

64 MB

128 MB

256 MB (special factory order)

512 MB (special factory order)

Normally, all V452 Series boards ship from the factory with a memory
module installed. The modular design of the V452 Series DRAM
interface, however, allows for easy DRAM upgrades in the field.

The drawing below shows the location of the R452/R453 memory
module on the motherboard.

Section 2: Getting Started

Installing the R452/R453 memory module

2-14 V452 User Guide

V452
Component

side

P1P2

P3 (EZ-bus module connector)

P4 (EZ-bus module connector)

CPU-X

CPU-Y
(Optional)

R452/R453
Solder
side

R452/R453
Solder
side

R452/R453 memory module location (top view)

This chapter describes field installation of an R452/R453 memory
module.

Note If the desired R452/R453 module is
already present on the V452 Series
board, proceed to the next chapter in this
section.

Section 2: Getting Started

Installing the R452/R453 memory module

V452 User Guide 2-15

Installing/upgrading the R452/R453
memory module
Perform the following steps to install or upgrade a R452/R453 memory
module.

➊ Verify proper operation of motherboard (if replacing an existing
R452/R453 memory module) — Before attempting to install a
new R452/R453 memory module on a working CPU
motherboard, consider checking that the motherboard (and any
attached EZ-bus modules) are operating properly.
Perform the installation/checkout procedure for the V452 Series
board as described later in this section.

➋ Power-down and remove CPU motherboard from card cage (if
necessary) — Power-down the system and remove the V452
Series CPU board from the card cage.

Synergy CPU motherboards contain
static-sensitive devices. Make sure you
are properly grounded (by putting on a
ground-strap, touching the system power
supply, etc.) before removing and han-
dling the board. Use an ESD-protected
workstation for module removal and
installation work.

➌ Remove existing R452/R453 memory module from CPU
motherboard (if you are replacing — refer to drawing below for
assembly details):
a. Place V452/R45x assembly face-down, that is with large

circuit board (motherboard) on top, on a flat surface of an
ESD-protected workstation.

b. Remove four M2.5 slot-head screws from rear (solder) side of
V452 motherboard (area of P9, P10 and P11).

c. Turn V452/R45x assembly over.
d. Grasp R45x at sides and gently pull up until the connectors

come loose.

Section 2: Getting Started

Installing the R452/R453 memory module

2-16 V452 User Guide

View A-A
CPU MOTHERBOARD

P9

P11

Module pins PM9, PM10 and
PM11 engage motherboard

P9, P10 and P11 connectors

Memory Module, R452/R453 (up to 128MB)

CPU Motherboard

Screw, M2.5 thread, 6mm,
pan head slot (4 places)

P9 & P10 connectorsP11 connector

VIEW A-A, Side V iew — Memory Module Installation

Memory Module End of Motherboard

VME P1 connector
Top Eject Knob

Memory Module,
V452 (4/8/16 MB)
V453 (32/64/128 MB)

4 ea. securing
screws engage
memory module
standoffs.

PM11 pins (behind standoff) PM9 & PM10 pins (behind standoff) Standoff (4 places)

Standoff securing screws
(red paint on head)
DO NOT REMOVE

P10

R452/R453 module installation

➍ Install R452/R453 module on motherboard — Installation of
R452/R453 memory module is reverse of removal. Before
installing, make sure that connectors are engaged before fully
seating module. Refer to drawing on preceding pages for
assembly details.

Section 2: Getting Started

Setting up the V452 Series hardware

V452 User Guide 2-17

Setting up the V452 Series
hardware

This chapter lists the hardware configuration decisions and steps that
need to be made before installing V452 Series boards.

Normally, boards are ordered and built for a particular application that
establishes a configuration that encompasses many if not all of the con-
figuration tasks described in this chapter.

As a result, because many of these set-up decisions are application de-
pendent and/or already set by your ordering specification, this chapter
seeks to describe the general hardware configurations rather than pre-
scribe any particular system arrangement or suggest that the
configuration of the board as sent from the factory needs to be
changed.

Rather, it is intended as a summary/index of the required configuration
steps, a quick start or installer’s checklist for those who already have a
working knowledge of the issues involved, and an introduction to the
special features of the components or architecture on V452 Series
boards.

Note This chapter refers to several operational
subjects that in most cases are covered in
more detail elsewhere in this manual. If
more information on a particular subject
is available, the descriptions in this chap-
ter tell where it can be found.

Section 2: Getting Started

Setting up the V452 Series hardware

2-18 V452 User Guide

Default configuration
The table shown below lists the default hardware configuration for the
V452 Series boards before any jumpers, shunts, or custom modifi-
cations are made.

Default hardware conditions

Jumpers (presumes no jumper installed) Description
JK17 — Flash write enable/disable Disabled*

 — Bus Request Level Set by software
 — VME Remote Reset Disabled
 — Round Robin/Priority VME request handling Priority
 — Auto System Controller Enabled **
 — EPROM/Flash Boot select Flash boot

Notes: * Default state is ‘disabled’ with no jumper installed, but input is floating. To guarantee write
protection of flash memory, install jumper in disabled position.

** Board automatically set up as System Controller when installed in Slot 1 of card cage.

Configuration tasks
It may be necessary to change the default conditions listed in the table
above by installing shunts on the appropriate jumper block. The re-
quired hardware configuration tasks are outlined below and described
in more detail in the following pages:

➊ Verify that the board has a monitor EPROM and memory mod-
ule installed.

➋ Verify/install shunt at JK17 to enable or disable writing to Flash.
➌ Install a shunt at JK17 to set the bus request level (remove shunt

for software control of bus request level).
➍ Install a shunt at JK17 to enable VME remote reset (if desired).
➎ Install shunt at JK17 to prevent the board from being set up as

the VME System Controller as required.
➏ Install a shunt at JK17 to select Round Robin interrupt handling

(only if the board is to serve as System Controller).
❼ Install a shunt at JK17 to select Flash for booting (remove shunt

to boot from EPROM).

Section 2: Getting Started

Setting up the V452 Series hardware

V452 User Guide 2-19

Several of these configuration tasks involve the JK17 jumper block. The
drawing below shows the location of this jumper block.

V452
Component

side

P1P2

P3 (EZ-bus module connector)

P4 (EZ-bus module connector)

CPU-X

CPU-Y
(Optional)

P5 P6 P7 P8

P9 P10

P11

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

JK17

Empty Monitor
Socket

EPROM1
(CPU-Y)

Empty Monitor
Socket

EPROM0
(CPU-X)

17 18

Jumper JK17 location

Section 2: Getting Started

Setting up the V452 Series hardware

2-20 V452 User Guide

Enable/Disable Flash write
Write protection of Flash memory installed in the V452 Series EPROM
sockets is provided by two pair of jumper pins on JK17. To enable Flash
write, install a shunt across JK17 pins 1 and 2. To disable Flash write,
install a shunt across JK17 pins 3 and 4. The figure below shows the
jumper pins controlling Flash write.

1 2

3 4Flash Write Enable/Disable
Enable
Disable

Jumper settings (JK17) — Flash write enable/disable

Note If no jumper is installed at all in either of
the two positions, Flash writing is
disabled by default, though input pins
(Vpp) are left floating. To guarantee write
protection, install a shunt across JK17
pins 3 and 4.

Section 2: Getting Started

Setting up the V452 Series hardware

V452 User Guide 2-21

Set the VMEbus request level
The VME interface on V452 Series boards can request access to the
VMEbus at four different priority levels from lowest (level 0) to highest
(level 3) priority. The V452 bus request level can be set in either
hardware (JK17 jumpers) or software. If no bus request level jumpers
are installed, the Ethernet/VMEbus control registers (FE3A 4000-F) take
over to set the bus request level.

To set the bus request level in hardware, configure JK17 pins 5-10 for
one of the bus request levels as shown in the figure below:

5 6

7 8

9 10

Bus Request Level
No jumper = software control of bus request level

5 6

7 8

9 10

5 6

7 8

9 10

5 6

7 8

9 10

Level 0 Level 1 Level 2 Level 3

Bus request level jumper settings (JK17)

Note For more information about setting the
bus request level in software, see the
V452 Series internal registers chapter in
Section 3. For more information about
selecting a VMEbus request level, see the
VME Master interface chapter in Section
5.

Section 2: Getting Started

Setting up the V452 Series hardware

2-22 V452 User Guide

Enable VME Slave remote reset
V452 Series boards support remote reset by external VME Masters. To
enable VME Slave remote reset, install a shunt across JK17 pins 11 and
12 as shown in the figure below. Remove the shunt to disable this
feature (if necessary).

11 12
Remote Reset Enable

No jumper = Disabled

Jumper settings (JK17) — Remote Reset enable

Note For more information about VME remote
reset, see the Default and reset condi-
tions chapter in Section 3 and the VME
Slave interface chapter in Section 5

Section 2: Getting Started

Setting up the V452 Series hardware

V452 User Guide 2-23

Select Round Robin or Priority request han-
dling
If acting as the System Controller, V452 Series boards can support
either Round Robin or Priority handling of VMEbus requests.

To select Round Robin request handling, install a shunt across JK17 pins
13 and 14 as shown in the figure below. To select Priority handling
remove this shunt (if it is installed).

13 14Round Robin Enable
No jumper = Priority Arbitration

Jumper settings (JK17) — Round Robin vs. Priority requests

Note For more information about these
VMEbus request methods, see the
System Controller chapter in Section 5.

Section 2: Getting Started

Setting up the V452 Series hardware

2-24 V452 User Guide

System controller force disable
All V452 Series boards contain circuitry allowing them to automatically
serve as the System Controller on the VMEbus when installed in slot 1.

A jumper is provided to force disable of the system controller.
Normally, this jumper is not installed. However, in the event of
unwanted interactions with the auto-detection circuitry, force the
system controller to the disabled state by installing a shunt across JK17
pins 15 and 16 as shown in the figure below.

15 16
System Controller Force Disable

No jumper = Auto System Controller Enabled

Jumper settings (JK17) — System Controller force disable

Note For more information about the capabili-
ties and features of the V452 Series
System Controller circuit, see the System
Controller chapter in Section 5.

Section 2: Getting Started

Setting up the V452 Series hardware

V452 User Guide 2-25

Boot select, EPROM or onboard Flash
A jumper is provided to select between booting from EPROM socket
devices (i.e., regular EPROM or Flash EPROM) or the onboard Flash
memory. As shown in the figure below, install a shunt across JK17 pins
17 and 18 to boot from Flash. To boot from EPROM, remove the shunt
from JK17 pins 17 and 18.

17 18
Flash Boot Enable

No jumper = Boot from EPROM

Jumper settings (JK17) — EPROM/Flash boot select

With no jumper installed at JK17 pins 17 and 18, the CPU reads its
reset vector from EPROM0 at FE00 0000. When this jumper is installed,
the CPU reads its reset vector from the onboard Flash memory at
FC00 0000.

Section 2: Getting Started

Setting up the V452 Series hardware

2-26 V452 User Guide

Section 2: Getting Started

Installing V452 Series CPU boards

V452 User Guide 2-27

Installing V452 Series CPU
boards

This chapter explains how to install an V452 Series board in a VME card
cage.

Materials
To complete this procedure, you will need the following materials:

V452 Series board to be installed,

VME card cage meeting the minimum system requirements (See
the chapter on Minimum system requirements earlier in the
Getting Started section.)

Section 2: Getting Started

Installing V452 Series CPU boards

2-28 V452 User Guide

Procedural steps
To install the V452 Series boards in a VMEbus card cage, perform the
following steps:

➊ Install the board in a VMEbus slot — if the board is to be the
System Controller, install it in Slot 1.

Note If you intend to install the board in a slot
that has been empty up to this point, be
sure to remove the daisy-chain jumpers
for that slot from the VMEbus. For more
information, refer to the documentation
accompanying the system or VMEbus
card cage assembly you are using.

➋ Attach a modular serial interface cable to Serial I/O connector
A on the front panel — Once the board is installed, plug a modu-
lar serial I/O cable into the 10-pin, modular Serial I/O connector
A (P5) on the front panel as shown in the figure below.

For more information, see the Serial cabling options chapter in
Appendix A.

A
C

B/D

Connect modular cable
from RS-232 terminal
into Port A

Serial I/O port A (front panel)

Section 2: Getting Started

Installing V452 Series CPU boards

V452 User Guide 2-29

➌ Connect terminal to I/O cable — Connect an RS-232/423 or RS-
422 compatible terminal to the serial I/O cable. Set the terminal
communication configuration to:

9600 baud
receive, no handshake
transmit, Xon/Xoff
no parity
one stop bit

To allow the modular cable to connect to a D-type connector on
the terminal, use a Modular/EIA adapter described in the Serial
cabling options chapter in Appendix A.

Note Note that serial ports A and C can
support either RS-232/RS-423 single
ended or RS-422A signals to either DTE
or DCE devices by using different inter-
face cable and adapter configurations.
Serial ports B & D support only RS-
232/RS-423. To ensure that the
cable/adapter you are using provides the
required signals for your terminal or serial
device, see the Serial cabling options
chapter in Appendix A.

➍ Power-on all units — Power-up the card cage containing the
V452 Series board and the video terminal that is connected.

➎ Verify boot sequence and appearance of start-up banner —
Immediately upon power-up, all of the yellow LEDs on the
board’s front panel flash momentarily. Then, the green X LED
should illuminate as the CPU accesses the boot PROM.
The start-up banner for the monitor PROM/EPROM you have in-
stalled on the board should then appear. If the banner appears,
the V452 Series is in working condition and ready for user-
configuration.
The power-up banners you may see are described below:

Section 2: Getting Started

Installing V452 Series CPU boards

2-30 V452 User Guide

Power-on banners
The paragraphs below show example power-on banners for the various
operating system PROM/EPROMs that are available for V452 Series
boards. Note that firmware revisions may result in actual displays that
differ from the given examples.

OS-9

Shown below is an example of the OS-9 PROM’s power-up banner. For
more information, see the Using Professional OS-9, product
documentation from Microware Systems Corporation or contact:

OS-9/68000 Operating System
Microware Systems Corporation
1900 N.W. 114th Street.
Des Moines, Iowa 50322
(515) 224-1929

Note In the below example of the OS-9 startup
banner, the user must enter a g <Enter>
in response to the RomBug: prompt in
line 11 to see the remainder of the
banner. The last six lines of the banner
also includes a login routine in which
user input is required.

Section 2: Getting Started

Installing V452 Series CPU boards

V452 User Guide 2-31

OS-9/68K System Bootstrap

<Called>
Searching special memory list for symbol modules...

rombug40X_8M
dn: 00000000 00002000 00000000 00000000 00000000 00000001 FFFFE000 0000B1F0
an: FE000AAC FE000500 FE040000 FE040000 0000C200 00004000 0000B200 0000B1F0
pc: FE0009AE sr:2708 (--SI-7-N---)t:OFF msp:00039172 usp:00000000 ^isp^
Boot >43FAFBAC lea.l Reset(pc),a1
RomBug: g

BOOTING PROCEDURES AVAILABLE ---- <INPUT>

Boot from Viper tape drive ------ <vs>
Boot from SCSI(SCCS) hard drive - <hs>
Boot from ROM ------------------- <ro>
Load Bootfile from ROM ---------- <lr>
Synergy Ram Boot ---------------- <ra>
Boot from BOOTP I82596 ---------- <ie>
Reconfigure the boot system ----- <rc>
Restart the system -------------- <q>

Select a boot method from the above menu: hs

A valid OS-9 bootfile was found.
-t -np
*
* OS-9
* Copyright 1984 by Microware Systems Corporation
*
* The commands in this file are highly system dependent and should
* be modified by the user.
*
setime -s ;* start system clock
December 11, 1996 Wednesday 10:55:27 am
iniz /h0
*chd /h0/SYS
*startisp
*chd /h0
* iniz r0 h0 d0 t1 p1 ;* initialize devices
* load utils ;* make some utilities stay in memory
* load bootobjs/dd.r0 ;* get the default device descriptor
* init.ramdisk >/nil >>/nil& ;* initialize it if its the ram disk
* tsmon /t1 & ;* start other terminals
* list sys/motd
ex tsmon /term
1 devices online

OS-9/68K V3.0.2 Synergy Microsystems SV40 - 68040 96/12/11 10:55:32

User name?: super
Password:
Process #06 logged on 96/12/11 10:55:35
Welcome!

Super>

Section 2: Getting Started

Installing V452 Series CPU boards

2-32 V452 User Guide

pSOS/pROBE (pSOS+/68k)

Shown below is an example of the pSOS/pROBE PROM’s power-up
banner. For more information see the pSOS+/68k Evaluation Package
User's Guide; Manual Version 1.1; Software Components Group or
contact:

Synergy Microsystems, Inc.
(858) 452-0020

OR Software Components Group, Inc
1731 Technology Drive, Suite #300
San Jose, CA 95110
(408) 437-0700

PROBE V3.14 (68040)
COPYRIGHT 1986, SOFTWARE COMPONENTS GROUP INC.
ALL RIGHTS RESERVED

pROBE>

pROBE.jr (pROBE/68k)

Shown below is an example of the pROBE.jr PROM’s power-up banner.
For more information, see pROBE.jr User Guide; Synergy Microsystems,
Inc., or contact:

Synergy Microsystems, Inc.
(858) 452-0020

OR Software Components Group, Inc
1731 Technology Drive, Suite #300
San Jose, CA 95110
(408) 437-0700

Synergy Microsystems Inc.
 pROBE.jr v3.1.0 DebugMon
 Software Components, Inc
 <board/mod> - mm/dd/yy

pROBE.jr:

VxWorks

Shown below is an example of the VxWorks PROM’s power-up banner.
For more information see the VxWorks Reference Manual; Version 5.2;
Wind River Systems or contact:

Synergy Microsystems, Inc.
(858) 452-0020

OR Wind River Systems, Inc.
1351 Ocean Ave.
Emeryville, CA 94608
(800) 545-WIND

Section 2: Getting Started

Installing V452 Series CPU boards

V452 User Guide 2-33

boot device : ei
processor number : 0
host name : host
file name : /vw/trg/sv462x
inet on ethernet (e) : 197.42.42.225:ffffff00
inet on backplane (b): 198.0.0.1
host inet (h) : 197.42.42.10
user (u) : vw
flags (f) : 0x0

Attaching network interface ei0... done.
Subnet Mask: 0xffffff00
Attaching network interface lo0... done.
Loading... 490048 + 30480 + 24382
Starting at 0x1000...

Target Name: vxTarget
Attaching network interface ei0... done.
Initializing backplane net with anchor at 0x600... done.
Backplane anchor at 0x600... Attaching network interface sm0... done.
Attaching network interface lo0... done.
Loading symbol table from host:/vw/trg/sv462x.sym ...done

]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] (R)
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]] Development System
]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]] VxWorks version 5.2
]]]]]]]]]]]]]]]]]]]]]]]]]] KERNEL: WIND version 2.4
]]]]]]]]]]]]]]]]]]]]]]]]] Copyright Wind River Systems, Inc., 1984-1995

CPU: Synergy SV-462x. Processor #0
0x20000000[0x200000] BSP version 1.0/4

Friday Nov 17, 1995 <15:44:17> GMT

 ->

Section 2: Getting Started

Installing V452 Series CPU boards

2-34 V452 User Guide

SMon

Shown below is an example of the SMon PROM’s power-up banner.
For more information see the SMon User Guide or contact:

Synergy Microsystems, Inc.
9605 Scranton Road, Suite 700
San Diego, CA 92121-1773

SMon BOOT ROM V2.65 (Synergy Microsystems - SV400/440/460 X CPU)

Copyright (c) 1992,1993,1994, Synergy Microsystems, Inc.

HARDWARE PARAMETERS:
 This Board's address on the VME bus is 0x02000000
 The serial channel will use a baud rate of 9600
POWERUP TEST(S):
 Powerup test(s) are disabled
 After board is reset, startup code will wait 2 seconds

To change any of this, hit any key within 2 seconds

_______________ _/_/_/ _/ _/
 ____________ _/ _/ _/_/ _/_/
 _________ _/ _/ _/ _/_/ _/_/_/ _/ _/_/

______ _/_/_/ _/ _/ _/ _/ _/ _/_/ _/
____ _/ _/ _/ _/ _/ _/ _/
__ _/ _/ _/ _/ _/ _/ _/ _/

//_/ _/ _/ _/_/_/ _/ _/

Synergy V4X0 Monitor & C Compiler Rev 2.65, 1994/06/28

Type "help" for help.

hello world

Aug 12 12:02:26 1994
SMon>

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-35

Setting up the V452 Series
software

Upon power-up, V452 Series boards require a set of software in-
structions to set up several on-board functions. The monitor EPROM
that may be provided with the V452 Series board establishes a par-
ticular initialization or environment encompassing many if not all of
these initialization tasks.

Because many of these set-up decisions are application-dependent
and/or already set by your system firmware, this chapter seeks to
describe the general requirements for system initialization rather than
prescribe any particular system arrangement or to suggest that any
changes need to be made to the software configuration provided by
the system software package that may have been supplied with the
board.

This chapter describes the general default or pre-initialized state of
V452 Series boards following a power cycle or board reset and then
goes on to describe the required and/or optional software initialization
tasks needed to bring the board up from scratch. It is intended to serve
as a summary/index of the required configuration steps, a quick start or
programmers checklist for those who already have a working
knowledge of the issues involved, and an introduction to the special
features of the components or architecture of V452 Series boards.

Note This chapter refers to several operational
subjects that in most cases are covered in
more detail elsewhere in this manual. If
more information on a particular subject
is available, the descriptions in this chap-
ter tell where it can be found.

Section 2: Getting Started

Setting up the V452 Series software

2-36 V452 User Guide

Default (pre-initialization) conditions
V452 Series boards present a series of default conditions that exist
before software initialization occurs. To provide maximum flexibility,
V452 Series boards provide several software initialization registers to
set up the board for a specific use. Some of these conditions are unique
to the V452 Series architecture/circuitry while others pertain to
individual chips. The following table lists these pre-initialization
conditions.

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-37

Default conditions on power-up

Front panel LEDs
Application LEDs (front panel) On
Fail LED On

On-board interrupts
ABORT switch (Level 7 interrupt) Enabled (non-maskable)
Status for all other Interrupt sources (Levels 7 - 2) Disabled

68040/060 functions
Internal cache contents Indeterminate
Internal instruction & data caches Disabled
Memory areas not subject to caching (transparent translation) None

On-board DRAM
Content of on-board RAM and RAM parity Indeterminate
Memory parity checking Disabled

CPU Watchdog
CPU Watchdog Halt monitor Disabled
CPU Watchdog Run monitor Disabled

Serial ports B & D Disabled
EPROM1 access by CPU-Y Enabled
VME Slave interface

Slave interface status Disabled
Slave memory write access Disabled
Slave memory write access protection level Supervisor-only
Address width A32
Window size 16 MB
Base Address 0 MB (x000 000)
Lower vs. Upper VME A32/D32 address range Lower (Top of DRAM to

0x3FFF FFFF)
VME Master interface

VMEbus release configuration Release on Request (ROR)
VMEbus request configuration Not FAIR requests
VMEbus request level configuration (if not set by JK17 jumper) Level 3

VME interrupts
VME Interrupter status Reset
VME interrupt level asserted by the VME interrupter Level 7
VME interrupt vector asserted by the VME interrupter Indeterminate
VME Interrupt handler level None

VME SysRes signal
VME SysRes (reset) reception respond/ignore Respond

VME SysFail signal
VME SysFail interrupt reception (via 2692 DUART) Disabled
VME SysFail\ signal Asserted

2692 control registers
Serial ports B and D Disabled
VME interrupter level Level 7
SysFail reception Off

Section 2: Getting Started

Setting up the V452 Series software

2-38 V452 User Guide

Initialization tasks
The default conditions listed in the table above can be changed, if re-
quired, by executing an initialization program sequence during the sys-
tem boot process. The same instructions from this sequence can also be
used to alter settings on-the-fly to produce special environments or
temporary effects.

The primary software initialization tasks are:

➊ Set up the 68040/060 caches & data fetching behavior,
➋ Enable the desired on-board and VME interrupts and configure

the VME interrupter,
➌ Initialize on-board devices,
➍ Enable serial channels B and D (if desired),
➎ Turn off the application LEDs,
➏ Initialize RAM, clear parity, and enable memory parity protection

(if desired),
➐ Set up the VME Master interface (if needed),
➑ Set up and enable the VME Slave interface (if needed),
➒ Perform self test (if desired), release the VME SysFail signal, and

turn off the Fail LED,
➓ Set up and enable Watchdog timer (if desired).

The remaining paragraphs in this chapter describe these software initial-
ization tasks in greater detail.

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-39

Set up the CPU caches & data fetching behavior

The 68040/060 implements data and instruction caching to improve
performance.

Flushing the cache contents — A power cycle or processor reset does
not invalidate the cache lines. The caches, therefore, must be
invalidated early in the initialization sequence to flush out old
instructions and data. This is done with the 68040 CINVA assembler
instruction which explicitly clears the cache:

cinva
nop

If you do not have assembler that specifically supports the 68040, the
following “hand-assembled” command can also be used:

.short 0xF4DB
nop

Note The nop instruction is recommended by
Motorola to resynchronize the CPU’s in-
ternal pipelines.

Using the Transparent Translation register — Certain types of data are
not compatible with the CPU’s caching and processing techniques. The
Transparent Translation register in the CPU identifies areas in memory
to be "translated" directly or given special handling by the CPU’s MMU.
The address space assigned to I/O functions is a particularly important
area for such special treatment for the following two reasons:

I/O areas are not compatible with data caching because the data
they contain can be changed by an external source without the
knowledge of the CPU's cache circuitry.

Normally, I/O activity must be processed in a strict sequence of
steps. Unless otherwise instructed by the MMU, the 68060 will
choose the order of read and write instructions to optimize its
own operations without regard for the needs of external devices.

As a result, the data (dtt0) in I/O regions (above 0xFE00 0000 on V452
Series boards) must be identified for “serialized” processing and must
be inhibited from data caching using the following set of 68040 assem-
bler commands:

Section 2: Getting Started

Setting up the V452 Series software

2-40 V452 User Guide

movel #0xFE01C040, d0
movec d0, dtt0

The hexadecimal expression in the movel instruction given above
directs the 68060 to perform the following individual actions:

➊ The FE byte designates the 16 MB area from 0xFE00 0000 to
0xFEFF FFFF as the base area for transparent translation.

➋ The 01 byte designates an additional 16 MB area above the
base area (0xFF00 0000 to 0xFFFF FFFF) for transparent transla-
tion.

➌ The C0 byte enables the transparent translation register to con-
tain the memory range expressed in the previous two bytes. It
also enables transparent translation for both user and supervisor
modes.

➍ The 40 byte directs the 68060 to inhibit caching, and to serialize
the designated memory region.

In lieu of a 68040-compatible assembler, the following sequence can be
used which includes a hand-assembled command for the movec
command listed above:

movel #0xFE01C040, d0
.long 0x4E7B0006

Configure the 68060 caches (68060 only) — The 68060’s cache
control register (CACR) is a 32-bit register that controls operation of the
instruction and data caches. A MOVEC instruction sets all of the bits in
the CACR. A reset clears the CACR which disables both caches. After a
reset, therefore, enable caches and other options as required for your
application. The table below summarizes the CACR.

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-41

CACR Bit Assignments

Bit(s) Function When 0 When 1
31 Enable Data Cache Data cache is disabled. Data cache is enabled.
30 No Allocate Mode (data cache) Read and write misses will allocate in

data cache.
Read and write misses will not
allocate in data cache.

29 Enable Store Buffer All writes to writethrough or cache-
inhibited imprecise pages will bypass
the store buffer and generate bus
cycles directly.

The four-entry FIFO store buffer to
the ‘060 is enabled.

28 Disable CPUSH Invalidation Each cache line is invalidated as it is
pushed. Affects only data cache.

CPUSHed lines remain valid in the
cache.

27 1/2 Cache Operation Mode
Enable (data cache)

The data cache operates in normal,
full-cache mode.

The data cache operates in 1/2
cache mode.

26–24 reserved — —
23 Enable Branch Cache The branch cache is disabled and

branch cache information is not used
in the branch prediction strategy.

The on-chip branch cache is
enabled. Branches are cached.

22 Clear All Entries in Branch Cache No operation is done on the branch
cache.

The entire content of the ‘060 branch
cache is invalidated.

21 Clear All User Entries in Branch
Cache

No operation is done on the branch
cache.

All user-mode entries in the ‘060
branch cache are invalidated;
supervisor mode branch cache
entries remain valid.

20–16 reserved — —
15 Enable Instruction Cache Instruction cache is disabled. Instruction cache is enabled.
14 No Allocate Mode (instruction

cache)
Accesses that miss in the instruction
cache will allocate.

The instruction cache will continue to
supply instructions to the processor,
but an access that misses will not
allocate.

13 1/2 Cache Operation Mode
Enable (instruction cache)

The instruction cache operates in
normal, full-cache mode.

The instruction cache operates in 1/2
cache mode.

12–0 reserved — —

Enabling and disabling the caches — To enable the instruction and data
caches, use the following 68030-compatible assembler command:

movel #0x80008000, d0 |Write to intermediary scratch register
movec d0, cacr |Enable data & instruction caches

To disable the instruction and data caches, execute the following as-
sembler command:

movel #0x00000000, d0 |Write to intermediary scratch register
movec d0, cacr |Disable data & instruction caches

Section 2: Getting Started

Setting up the V452 Series software

2-42 V452 User Guide

Note Refer to the applicable Motorola CPU
User’s Manual for more information on
additional cache configuration options
provided by the CACR register.

Enable on-board and VME interrupts & configure VME in-
terrupter

In the default condition on V452 Series boards, the CPU is masked
from receiving any on-board or VME interrupts (except the non-
maskable Level 7 interrupt from the on-board ABORT toggle switch).
Muzzling interrupts in this fashion allows the system to initialize on-
board devices for reliable operation before attempting to honor inter-
rupt requests that could potentially be spurious.

Interrupts are enabled by writing to specific address locations in the
Interrupt Control registers at 0xFE39 0000 to 0xFE39 C00F. These
registers provide a means to enable or disable interrupts from devices
on V452 Series boards and all seven VMEbus interrupts.

The V452 Series interrupt architecture
provides independent interrupt control
for both CPUs (CPU-X and CPU-Y) on
dual-CPU models.

For single-CPU models, set interrupts
only for CPU-X. Setting interrupts for
CPU-Y has no effect.

Because there are several on-board and VME interrupt sources, this
section of the initialization program normally requires several lines of
code. However, the structure of the commands needed to enable each
interrupt is the same.

For example, to enable interrupts for the asynchronous serial channels
A & B (2692) to CPU-X, execute the following 680x0 assembler instruc-
tion:

moveb #0x00, 0xFE390001

Enabling Parity and VME SysFail interrupts — V452 Series product
series boards provide two layers of control for setting the Level 7 inter-
rupts for SysFail and parity errors providing broad flexibility in interrupt
handling.

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-43

The Interrupt Control register enables and/or disables all of the
maskable level 7 interrupt sources as a group (i.e., Parity error,
SysFail, and ACFail as a group). In the default condition, this in-
terrupt is disabled.
To enable Level 7 interrupts to CPU-X, execute the following
680x0 assembler instruction:

moveb #0x00, 0xFE394001

or to enable Level 7 interrupts to CPU-Y, execute the following
680x0 assembler instruction:

moveb #0x00, 0xFE39C001

To enable SysFail interrupts, it is also necessary to write a 04 to a
register location 0xFE28003B on 2692 DUART A using the in-
struction below:

moveb #0x04, 0xFE28003B

For more information about setting the SysFail interrupt, see the
System Controller chapter in Section 5.

To enable parity checking (so that an interrupt is possible), it is
also necessary to write 0E to the Primary Mode register at
0xFE38 0003 using the instruction below:

moveb #0x0E, 0xFE380003

For more information about using parity checking, see the
Dynamic RAM chapter in Section 4.

Note Disabling the maskable Level 7 interrupts
using the Interrupt Control register dis-
ables SysFail and parity interrupts regard-
less of the settings for the other registers
described above.

For a complete list of all the interrupt sources and Interrupt Control reg-
ister locations, see the Interrupts chapter in Section 3 of this manual or
the V452 Series Quick Reference Card.

Section 2: Getting Started

Setting up the V452 Series software

2-44 V452 User Guide

Initialize on-board devices

Many of the V452 Series on-board I/O and timer/counter devices
require special initialization before they can function reliably as inter-
rupt sources.

Note Generally, the monitor software provided
with your V452 Series board completes
device initialization tasks (other than
clearing RAM) automatically.

However, if you intend to produce a
boot routine from scratch, ensure that
each device to be used has been prop-
erly initialized prior to enabling its associ-
ated interrupts.

Enable serial ports B and D

In the default condition after a reset or power cycle of the V452 Series
board, serial ports B and D are disabled by the DUART’s OP4 output
driving the corresponding line driver’s TxD and RTS lines to the high
impedance mode (tri-state).

To enable serial port B, execute the following 680x0 assembler instruc-
tion:

moveb #0x10, 0xFE28003B ;enable TxD, RTS

To enable serial port D, execute the following 680x0 assembler instruc-
tion:

moveb #0x10, 0xFE20003B ;enable TxD, RTS

Serial ports A and C on V452 Series boards are hardwired to the
enabled state. No tri-state control of line drivers is done on these ports.

Turn off Application LEDs (0-7)

V452 Series boards provide 8 LEDs that can be turned on and off by
user applications.

In the default condition, all eight of these LEDs are turned ON. They
may be turned OFF by writing the correct value to the Primary Mode
register (LEDs 0-3) or Extended Mode register (LEDs 4-7). For example,

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-45

to turn off LED 0, write 08 to the Primary Mode register at
0xFE38 0003 using the following 680x0 assembler command:

moveb #0x08, 0xFE380003

Note For the proper Mode register values for
controlling the other user-programmable
LEDs, see the V452 Series internal
registers chapter in Section 3.

Initialize RAM, clear parity, and enable parity checking

Upon power-up or reset, the contents of RAM must be initialized to
clear bad parity before memory parity checking can be enabled. If it is
important to maintain the contents of RAM, (e.g., for debugging) clear
bad parity by reading every memory location and then writing it back.

V452 Series boards can provide memory parity checking for all on-
board RAM. If bad parity is encountered, a local Level 7 interrupt is as-
serted.

In the default condition, parity checking is disabled. To enable it, write
0E to the Primary Mode register at 0xFE38 0003 using the following
680x0 assembler command:

moveb #0x0E, 0xFE380003

Note For more information about parity check-
ing, see the Dynamic RAM chapter in
Section 4.

Set up the VME Master interface

V452 Series boards support FAIR and non-FAIR bus request and either
Release on Request (ROR) or Release When Done (RWD) bus release
schemes. These options are selected by writing to the Bus Request and
Control (0xFE38 C000).

Note For more information about these bus
request and release schemes, see the
VME Master interface chapter in Section
5.

In the default condition, Release on Request (ROR) is selected. To
select Release When Done (RWD), execute the following 680x0 assem-
bler command:

Section 2: Getting Started

Setting up the V452 Series software

2-46 V452 User Guide

moveb #0x00, 0xFE38C001

In the default condition, the FAIR bus request scheme is not active. To
direct the V452 Series board to use FAIR bus requests, execute the
following 680x0 assembler command:

moveb #0x00, 0xFE38C003

In order for the FAIR bus request scheme to be used, ALL devices on
the VMEbus must be set to use it.

Set up and enable the VME Slave interface

In the default condition, V452 Series boards disable the VME Slave
interface, disable Slave access write protection, and provide a default
Slave base address, window size, and operating mode.

The following Slave interface characteristics can be set or changed via
software:

A32 (default) or A24 addressing,

Slave write access protection level as either no write access
allowed, Supervisor-only accesses (default) or write accesses
allowed by all VME Masters,

Slave access window size and base address and either the upper
or lower VME address range (if applicable).

A summary of the software commands required to set these character-
istics is described below:

Select A32 vs A24 addressing — V452 Series Slave interface can
decode either 32-bit (A32) Extended Addressing or 24-bit (A24)
Standard Addressing from a VMEbus Master. The Slave Interface
Control register determines the current address mode setting.

Note V452 Series boards do not support A16
VME address mode accesses as a VME
Slave but are able to generate 16-bit
(A16) addresses as VMEbus Masters. For
more information see the VME Master
interface chapter in Section 5.

The default setting for V452 Series boards is A32 addressing. To set up
a V452 Series board for A24 addressing, execute the following 680x0

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-47

assembler instruction (or include it in the board’s boot/initialization
code):

moveb #0x00, 0xFE388001 | A24 addressing

To return to A32 addressing, either reset the board or execute the fol-
lowing instruction.

moveb #0x00, 0xFE388000 | A32 addressing

Configure the Slave write access protection level — When the Slave in-
terface is enabled, all VMEbus Masters are given complete read access
to on-board RAM memory. However, Slave write access is limited to
only those Masters whose processors are operating at that moment in
Supervisor mode. This default Supervisor-only write access condition is
one of three possible write access protection levels available for V452
Series boards.

It is also possible to set up the Slave interface to inhibit all write
accesses by writing 0D to the Primary Mode register at 0xFE38 0003.
Execute the following 680x0 assembler command:

moveb #0x0D, 0xFE380003 | Prohibit all Slave write accesses

If on the other hand, you wish to grant write access privileges to all
Masters, execute the following 680x0 assembler command:

moveb #0x00, 0xFE388003 | Allow all Masters to write

Note For more information about setting the
Slave write access memory protection
level, see the VME Slave interface
chapter in Section 5.

Select the Lower or upper VME A32/D32 address range — For
A32/D32 Slave accesses, V452 Series boards reserve the following two
locations where the Slave access window for the board can appear on
the VMEbus:

Lower A32/D32 range (default) — up to 3FFF FFFF. (The lower
boundary of this range depends on the amount of on-board
memory. For more information see the Address map chapter in
Section 3.

Upper A32/D32 range — 8000 0000 - BFFF FFFF.

Section 2: Getting Started

Setting up the V452 Series software

2-48 V452 User Guide

The default setting for V452 Series boards is to use the lower range for
A32/D32 accesses. To set up a V452 Series board to use the upper
A32/D32 range, execute the following 680x0 assembler instruction (or
include it in the board’s boot/initialization code):

moveb #0x00, 0xFE38800F | Upper VME A32/D32 range

To return to using the lower A32/D32 range, either reset the board or
execute the following instruction.

moveb #0x00, 0xFE38800E | Lower VME A32/D32 range

Indicate the A32/D32 window size and base address — Once the de-
sired memory range has been selected for VME accesses (as described
in the previous paragraphs) locations 0xFE38 8004 — 0xFE38 800D of
the Slave Interface Control register are used to select the window size
and precise base address for VME Slave accesses.

The desired window size and base address is indicated by performing
write accesses to a specific group of locations between 0xFE38 8004 —
0xFE38 800D range. For example, selecting the following setup:

Local memory size (default)

64 MB base address

would require the lower (or default) A32/D32 address range (as de-
scribed above) and the execution of the following sequence of 680x0
assembler commands:

moveb #0x00, 0xFE3A8004 | 64 MB base address (0x04000000)
moveb #0x00, 0xFE388004 | "
moveb #0x00, 0xFE388006 | "
moveb #0x00, 0xFE388008 | "
moveb #0x00, 0xFE38800A | "
moveb #0x00, 0xFE38800D | "

Note For a complete list of all the meaningful
combinations and the window size/base
address selected by each, see the VME
Slave interface chapter in Section 5 or
the V452 Series Quick Reference Card.

Enable the Slave interface — Once it has been set to the desired ar-
rangement, the Slave interface must be enabled before it will actually
be able to operate. To enable it, write 0F to the Extended Mode register

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-49

at 0xFE38 4003 by executing the following 680x0 assembler com-
mand:

moveb #0x0F, 0xFE384003

Note To disable the Slave interface either reset
the board or execute the following in-
struction:

moveb #0x07, 0xFE384003

When slave access is enabled, all of RAM is VME-accessible by default.
For all of local DRAM to be VME-accessible, a particular address
alignment must be used depending on the amount of onboard DRAM:

Boards with 16MB or less must be 16MB aligned

Boards with 32MB must be 32MB aligned

Boards with 64MB must be 64MB aligned

Boards with 128MB must be 128MB aligned

Boards with 256MB must be 256MB aligned

Boards with 512MB must be 512MB aligned

Perform self-test and suppress VME SysFail

After power cycling or reset, V452 Series boards assert the VME SysFail
signal across the VMEbus and continue to assert it until it is disabled. As
a final step to software initialization it may be desirable to perform any
desired self-test routine(s) to make sure critical systems on the board are
ready to go on-line and to indicate whether boot-up has been
successful.

To indicate that the board is ready to join the VMEbus, SysFail is sup-
pressed by writing 0C to the Primary Mode register at 0xFE38 0003
using the following 680x0 assembler command:

moveb #0x0C, 0xFE380003

Completing this task also turns off the Fail LED providing a convenient
visual check of the V452 Series board’s boot completion status.

Note For more information about the Mode
register, see the V452 Series internal
registers chapter in Section 3.

Section 2: Getting Started

Setting up the V452 Series software

2-50 V452 User Guide

Enable bus snooping

The ‘040/’060 processor features internal data and instruction caches to
improve processing speed. To help maintain coherency between data
stored in RAM and data undergoing processing in these internal caches,
the CPU is able to “snoop” on local RAM write accesses from an
external bus.

To maintain cache coherency, the ‘060 automatically invalidates the
cache line whenever snooping is performed and a write cycle hits in the
‘060s internal cache.

In the default condition, all bus snooping is disabled. To enable bus
snooping for the EZ-bus, write 0D to the Extended Mode register at
0xFE38 4003. To enable bus snooping for the VMEbus, write 0E to the
Extended Mode register at 0xFE38 4003. Use the following assembler
commands:

moveb #0x0D, 0xFE384003 |Enable EZ-bus snooping
moveb #0x0E, 0xFE384003 |Enable VMEbus snooping

Note For more information about bus snoop-
ing, see the applicable 680x0 CPU
chapter in Section 4.

Enable CPU Watchdog

V452 Series boards include a CPU Watchdog circuit (Dallas 1232 or
equivalent) that can be configured to monitor the operation of the
CPU(s) in either one or both of the following two ways.

Halt monitor — automatically resets the V452 Series board if the
CPU(s) halt.

Run monitor — automatically resets the board if not addressed
by the CPU(s) every 600 ms.

In the default condition, the Watchdog’s Halt monitor is disabled. To
enable the Halt monitor, write to location 0xFE38 C005 in the Bus
Request and Control register using the following 680x0 assembler
command:

moveb #0x00, 0xFE38C005

Section 2: Getting Started

Setting up the V452 Series software

V452 User Guide 2-51

Note For dual-CPU V452 Series models it may
be desirable to disable the Halt monitor
so that the running CPU can debug and
reset the halted CPU.

In the default condition, the Watchdog’s Run monitor is disabled. To
enable it, write 0C to the Extended Mode register at 0xFE38 4003
using the following 680x0 assembler command:

moveb #0x0C, 0xFE384003

Note For more information about the
Watchdog, see the CPU Watchdog chap-
ter in Section 4.

Section 2: Getting Started

Setting up the V452 Series software

2-52 V452 User Guide

V452 User Guide 3-1

Board
 Facilities 3

This section contains in-depth information about common, board-level
facilities and architecture for V452 Series boards.

Address map

Interrupts

Jumpers, switches, LEDs & fuses

V452 Series internal registers

Default and reset conditions

3-2 V452 User Guide

Section 3: Board Facilities

 Address map

V452 User Guide 3-3

Address map

This chapter lists the memory locations assigned to components,
peripherals, and registers for the V452 Series board. V452 Series boards
provide 4, 8, 16, 32, 64, or 128 MB of zero or one wait-state EDO
DRAM on a plug-in memory module. Higher capacity memory
modules, 256MB and 512MB, are available as a special factory order
option.

The locations assigned to specific components, peripherals and registers
are the same for all boards regardless of their on-board memory size.
However, the total memory present on the board determines the loca-
tion of boundary between on-board memory and off-board accesses.

Access behavior
Not all models of the V452 Series contain all of the components or
implement all of the functions listed on the map. Reading or writing to a
vacant on-board location yields meaningless data or does nothing.
Performing either of these actions does not cause any sort of bus error
or exception.

A portion of the address map is assigned to the Synergy EZ-bus which
provides an interface to one or two optional daughter modules. Each
daughter module governs the behavior of all accesses to it across the
EZ-bus. Attempting to access a non-existent daughter module causes a
bus error.

A large portion of the address map is assigned to the VMEbus. This
region is further divided as described in this chapter. As with the EZ-bus,
the specific device at each location governs access behavior and access
to non-existent locations causes a bus error.

Section 3: Board Facilities

Address map

3-4 V452 User Guide

Address map
The table below lists the address map as seen by the on-board CPU or a
32-bit daughterboard Master that has been installed on the board. A 24-
bit daughterboard Master can access the on-board DRAM directly. The
remaining locations are not accessible. A VME Master can access only
on-board DRAM through an access window as described in the VME
Slave interface chapter in Section 5.

Note The following table represents the stan-
dard V452 Series address map. Other
maps can be special-ordered or created
for your application if necessary. Contact
Synergy Customer Service for more
information.

V452 Series address map

Address range Address/data width Device / address space description
Off-board On-board

0000 0000 - 003F FFFF D32 4MB On-board DRAM
003F FE00 - 003F FEFF D32 Remote reset register (via VME Slave Interface)
003F FF00 - 003F FF7F D32 Mailbox write area to CPU-X (all models) *
003F FF80 - 003F FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0040 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 007F FFFF D32 8MB On-board DRAM
007F FE00 - 007F FEFF D32 Remote reset register (via VME Slave Interface)
007F FF00 - 007F FF7F D32 Mailbox write area to CPU-X (all models) *
007F FF80 - 007F FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0080 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 00FF FFFF D32 16MB On-board DRAM
00FF FE00 - 00FF FEFF D32 Remote reset register (via VME Slave Interface)
00FF FF00 - 00FF FF7F D32 Mailbox write area to CPU-X (all models) *
00FF FF80 - 00FF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0100 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 01FF FFFF D32 32MB On-board DRAM
01FF FE00 - 01FF FEFF D32 Remote reset register (via VME Slave Interface)
01FF FF00 - 01FF FF7F D32 Mailbox write area to CPU-X (all models) *
01FF FF80 - 01FF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0200 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 03FF FFFF D32 64MB On-board DRAM
03FF FE00 - 03FF FEFF D32 Remote reset register (via VME Slave Interface)
03FF FF00 - 03FF FF7F D32 Mailbox write area to CPU-X (all models) *
03FF FF80 - 03FF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0400 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range

Section 3: Board Facilities

 Address map

V452 User Guide 3-5

V452 Series address map (cont.)

Address range Address/data width Device / address space description
Off-board On-board

0000 0000 - 07FF FFFF D32 128MB On-board DRAM
07FF FE00 - 07FF FEFF D32 Remote reset register (via VME Slave Interface)
07FF FF00 - 07FF FF7F D32 Mailbox write area to CPU-X (all models) *
07FF FF80 - 07FF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
0800 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 0FFF FFFF D32 256MB On-board DRAM
0FFF FE00 - 0FFF FEFF D32 Remote reset register (via VME Slave Interface)
0FFF FF00 - 0FFF FF7F D32 Mailbox write area to CPU-X (all models) *
0FFF FF80 - 0FFF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
1000 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
0000 0000 - 1FFF FFFF D32 512MB On-board DRAM
1FFF FE00 - 1FFF FEFF D32 Remote reset register (via VME Slave Interface)
1FFF FF00 - 1FFF FF7F D32 Mailbox write area to CPU-X (all models) *
1FFF FF80 - 1FFF FFFF D32 Mailbox write area to CPU-Y (dual-processor) *
2000 0000 - 7BFF FFFF A32/D32 Lower VME A32/D32 address range
7C00 0000 - 7CFF FFFF A24/D32 VME A24 / D32 — Standard address space
7D00 0000 - 7DFF FFFF A24/D16 VME A24 / D16 — Standard address space
7E00 0000 - BFFF FFFF A32/D32 Upper VME A32/D32 address range
C000 0000 - DFFF FFFF EZ-bus module A (See user guide for module)
E000 0000 - FBFF FFFF EZ-bus module B (See user guide for module)
FC00 0000 - FC7F FFFF D32 Onboard Flash space
FD00 0000 - FDFF FFFF D8 EPROM1/Flash Memory Module✝

FE00 0000 - FE0F FFFF D8 EPROM0
FE10 0000 - FE10 07F7 D8 Non-volatile Static RAM (2KB default)
FE1F E000 - FE1F FFF7 D8 Non-volatile Static RAM (8KB extended)
FE10 07F8 - FE10 07FF D8 Clock/calendar (default)
FE1F FFF8 - FE1F FFFF D8 Clock/calendar (extended)
FE20 0003 - FE20 003F D8 Serial interface (channels C & D) — Timer 1
FE28 0003 - FE28 003F D8 Serial interface (channels A & B) — Timer 0
FE2A 0003 - FE2A 003F D8 16-bit Counters (82C54)
FE30 0000 D8 VME Interrupt vector register (write access)
FE30 0000 D8 CPU mailbox read area — 64x4 FIFO (read access)**
FE38 0002 D8 Status register (read access)
FE38 0003 D8 ID register — 8-bit front-panel switch (read access)
FE38 0003 D8 Primary Mode register (write access)
FE38 4003 D8 Extended Mode register (write access)
FE38 8000 - FE38 800F D8 Slave Interface Control register (write access)
FE38 C000 - FE38 C00F D8 Primary Control register
FE39 0001 D32/D8 Slot ID register (read access)
FE39 0003 D32/D8 CPU/Board type register (read access)
FE39 4003 D32/D8 Option register (read access)
FE39 8003 D32/D8 Board ECO register (read access)
FE39 C003 D32/D8 Board revision register (read access)

Section 3: Board Facilities

Address map

3-6 V452 User Guide

V452 Series address map (cont.)

FE39 0000 - FE39 000F D8 Interrupt Control register #1 (write access)
FE39 4000 - FE39 400F D8 Interrupt Control register #2 (write access)
FE39 8000 - FE39 800F D8 Interrupt Control register #3 (write access)
FE39 C000 - FE39 C00F D8 Interrupt Control register #4 (write access)
FE3A 0000 - FE3A 000F D8 Extended Control register (write access)
FE3A 4000 - FE3A 400F D8 Ethernet/VMEbus Control register (write access)
FE3B 8000 - FE3B 8003 D32 Ethernet Command Port (write access)
FE3B C000 - FE3B C003 D32 Ethernet Channel Attention (write access)
FE40 0000 - FE4F FFFF D8 EPROM1 (old space)✝
FE60 0000 - D32 32-bit Master BLT register (BLT32)
FE60 0020 - D32 64-bit Master BLT register (BLT64)
FE80 0000 - FEBF FFFF EZ-bus module A (See user guide for module)
FEC0 0000 - FEFF FFFF EZ-bus module B (See user guide for module)
FF00 0000 - FF00 FFFF A16/D32 VME A16/D32 short address space
FF80 0000 - FF80 FFFF A16/D16 VME A16/D16 short address space

Notes: * The two Mailbox write areas occupy the top 256 bytes of on-board DRAM.
** For dual-processor V452 Series models, each CPU accesses its own non-steerable Mailbox FIFO at this same

address.
✝ EPROM1 normally resides at FD000000–FDFFFFFF. For backward compatibility with early revisions of V440

and V460 SBCs, however, the old EPROM1 space at FE400000–FE4FFFFF is available for EPROM1 if
necessary. Refer to the Flash memory module chapter in Section 4 for more information.

Address and data size
The standard address map shows the VMEbus address/data as:

Amm/Dnn

where
mm is the number of address bits valid on the bus and
nn is the maximum data transfer size in bits.

The address size controls the address modifier bits placed on the bus,
while the data size controls the data strobes and long-word signals onto
the bus. Refer to the VMEbus Specification for more detailed
information.

VME Slave address map
The V452 Series board’s VME Slave address map can be found in the
VME Slave interface chapter in Section 5 and also on the V452 Series
Quick Reference Card.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-7

Interrupts

V452 Series boards feature a VMEbus interrupter, a VME interrupt
handler, on-board interrupt handler and a software-driven Interrupt
Control register for enabling and disabling the reception of all on-board
and VME interrupts. This chapter describes all V452 Series interrupt
operations.

Note For complete lists and descriptions of the
exception vectors for the V452 Series
board and the processor, see the
applicable (68040 or 68060) CPU
chapter in Section 4 or the V452 Series
Quick Reference Card.

Interrupt vectors and levels
The table on the following page lists the standard interrupts and vectors
for V452 Series boards and in the respective order of priority level from
highest to lowest.

Note It is possible to assign the same interrupt
priority to both an on-board and a
VMEbus interrupt. In this case the on-
board interrupt has priority over the
VMEbus interrupt.

Section 3: Board Facilities

Interrupts

3-8 V452 User Guide

V452 Series interrupt levels and vectors

Interrupt Source
On-board VMEbus Level Vector

Description
(see Chapter in manual)

ABORT pushbutton (non-maskable)

Parity error, SysFail, ACFail (maskable)

7A 0x7C Jumpers, switches, LEDs & fuses;
Dynamic RAM

VMEbus Int. 7 7B 1

Timers A & B [2692] 6A 0x782 Timers & counters
VMEbus Int. 6 6B 1

Serial interface — Ports A -D [2692] 5A 0x742 Asynchronous serial interface
VMEbus Int. 5 5B 1

EZ-bus interface — Modules A & B, Ethernet 10Base-T 4A 0x703 EZ-bus interface
VMEbus Int. 4 4B 1

CPU Mailbox (0-CPU-X; 1-CPU -Y) 3A 0x6C2 CPU mailbox
VMEbus Int. 3 3B 1

Counters (0-CPU-X; 1-CPU -Y) [82C54] 2A 0x682 Timers & counters
VMEbus Int. 2 2B 1

VMEbus Int. 1 1 1

Notes: 1 Interrupt vector is provided by the VMEbus board asserting the interrupt.
2 Uses 68040 Autovector in standard configuration
3 Daughter board dependent - may request 68040 Autovector or may provide its own vector. Vector number
shown is the level four Autovector.

The interrupt levels and vectors listed above are provided as standard
for the V452. The logic establishing these assignments is contained in
one of the in-system-programmable (ISP) high density programmable
logic devices on the V452 board. It is possible to special-order boards
with different programming for a customized set of interrupt levels. It
can also be reprogrammed later by the factory or even by a customer in
the field with a Synergy-supplied programming kit.

Note For more information about the
programming kit and programming the
custom interrupt vector and/or level con-
figurations, contact Synergy customer
service.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-9

Enabling/disabling interrupts
V452 Series boards provide control over interrupt handling by enabling
and/or disabling reception of interrupts by the on-board CPU(s) via a
set of 4 write-only registers located within the following address ranges:

Interrupt Control Reg. #1: 0xFE39 0000 – 0xFE39 000F

Interrupt Control Reg. #2: 0xFE39 4000 – 0xFE39 400F

Interrupt Control Reg. #3: 0xFE39 8000 – 0xFE39 800F

Interrupt Control Reg. #4: 0xFE39 C000 – 0xFE39 C00F

When combined, these registers provide a separate address location to
enable and also to disable reception of interrupts from each on-board
source and all seven VMEbus interrupt levels. The table below lists the
function of all the address locations in the Interrupt Control registers.

Section 3: Board Facilities

Interrupts

3-10 V452 User Guide

Address locations — Interrupt Control register
Interrupt Disable (default) Enable

Serial Port A&B to CPU-X Interrupt (2692) FE39 0000 FE39 0001
Serial Port C&D to CPU-X Interrupt (2692) FE39 0002 FE39 0003
Timer A to CPU-X Interrupt (2692) FE39 0004 FE39 0005
Timer C to CPU-X Interrupt (2692) FE39 0006 FE39 0007
Daughter module A to CPU-X FE39 0008 FE39 0009
Daughter module B to CPU-X FE39 000A FE39 000B
Mailbox to CPU-X FE39 000C FE39 000D
Counter to CPU-X (82C54) FE39 000E FE39 000F
Level 7 interrupts (parity, SysFail, ACFail) to CPU-X FE39 4000 FE39 4001
VME Level 1 to CPU-X FE39 4002 FE39 4003
VME Level 2 to CPU-X FE39 4004 FE39 4005
VME Level 3 to CPU-X FE39 4006 FE39 4007
VME Level 4 to CPU-X FE39 4008 FE39 4009
VME Level 5 to CPU-X FE39 400A FE39 400B
VME Level 6 to CPU-X FE39 400C FE39 400D
VME Level 7 to CPU-X FE39 400E FE39 400F
Serial Port A&B to CPU-Y Interrupt (2692) FE39 8000 FE39 8001
Serial Port C&D to CPU-Y Interrupt (2692) FE39 8002 FE39 8003
Timer A to CPU-Y Interrupt (2692) FE39 8004 FE39 8005
Timer C to CPU-Y Interrupt (2692) FE39 8006 FE39 8007
Daughter module A to CPU-Y FE39 8008 FE39 8009
Daughter module B to CPU-Y FE39 800A FE39 800B
Mailbox to CPU-Y FE39 800C FE39 800D
Counter to CPU-Y (82C54) FE39 800E FE39 800F
Level 7 interrupts (parity, SysFail, ACFail) to CPU-Y FE39 C000 FE39 C001
VME Level 1 to CPU-Y FE39 C002 FE39 C003
VME Level 2 to CPU-Y FE39 C004 FE39 C005
VME Level 3 to CPU-Y FE39 C006 FE39 C007
VME Level 4 to CPU-Y FE39 C008 FE39 C009
VME Level 5 to CPU-Y FE39 C00A FE39 C00B
VME Level 6 to CPU-Y FE39 C00C FE39 C00D
VME Level 7 to CPU-Y FE39 C00E FE39 C00F

After power cycling or a board reset, all interrupts revert to the default
disabled condition (with the exception of the ABORT pushbutton Level
7 interrupt which is non-maskable) and remain in this condition until
initialized by the system boot software/firmware.

Enabling an interrupt involves performing a bytewise write access to the
appropriate location in the Interrupt Control register.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-11

For example, to enable interrupts for the asynchronous serial channels
A & B (2692) to CPU-X, execute the following 68000 instruction:

moveb #0x00, 0xFE390001

To disable the same asynchronous serial channels A & B (2692) as an
interrupt source to CPU-X, reset the board or execute the following
68000 instruction:

moveb #0x00, 0xFE390000

Note The interrupt control circuitry is designed
to decode only the address portion of in-
structions for the Interrupt Control regis-
ter. The data value expressed in the in-
struction does not matter.

Interrupts on single vs. dual processor boards
V452 Series models featuring single verses dual processors require
special consideration when using interrupts.

Single processor models

When using a single processor V452 Series model, inadvertently setting
interrupts to CPU-Y has no effect on operations in any way.

Dual processor models

The V452 Series interrupt architecture provides independent interrupt
control for both processors (CPU-X and CPU-Y) on dual-CPU V452
Series models. When implementing an interrupt structure for dual
processors, it is important to observe the difference between the V452
Series steerable and non-steerable interrupt sources:

Steerable interrupt sources — Because the following interrupt
sources are not associated with a particular CPU, each of them
can be used by either CPU. However, if active for one CPU, the
same source should not be used for the other CPU at the same
time:
• Maskable Level 7 interrupts
• Serial ports A&B
• Serial ports C&D

Section 3: Board Facilities

Interrupts

3-12 V452 User Guide

• Timer A (2692)
• Timer B (2692)
• EZ-bus module A
• EZ-bus module B
• VME interrupts 1 - 7

Non-steerable interrupt sources — The following interrupt
sources have separate interrupt circuitry that is dedicated to a
specific CPU. As a result, these interrupt sources can be used by
either or both CPUs at the same time:
• CPU Mailbox
• Counter0 CPU-X (82C54)
• Counter1 CPU-Y (82C54)

On-board interrupt sources
The paragraphs below describe the on-board devices and processes
that can generate interrupts:

Note The interrupt levels and vectors described
in the paragraphs below refer to the
standard V452 Series interrupt configura-
tion. For information on custom interrupt
assignments, contact Synergy.

Non-maskable Level 7 interrupt source (ABORT)

The X ABORT switch asserts a non-maskable Level 7 interrupt to CPU-X
(or the only CPU on a single-processor board) and the Y ABORT witch
asserts a non-maskable Level 7 interrupt to CPU-Y on dual-processor
boards as shown in the figure below. Pushing both switches to the left
at once asserts a non-maskable Level 7 interrupt to both CPUs.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-13

R
E
S
E
T

A
B
O
R
T

☞
CPU-X Switch (all models)
 Push left to assert ABORT

 CPU-Y Switch (dual-CPU models)
 Push left to assert ABORT ☞

X

Y

A

ABORT switch operation

The ABORT toggle switch is a non-maskable interrupt source which
means that it is always enabled and cannot be disabled.

Note All of the remaining on-board interrupt
sources described in the paragraphs to
follow default to the disabled state after
a power cycle or reset of the board and
must be enabled by system software be-
fore use.

Maskable Level 7 interrupt sources

Enabling Maskable Level 7 interrupt sources makes it possible for parity
errors and reception of the VME SysFail or ACFail signals to cause a
Level 7 interrupt. The V452 Series maskable Level 7 interrupt sources
are steerable interrupt sources. On dual-processor V452 Series boards
this means that both maskable Level 7 interrupts can be configured to
interrupt either CPU.

Enabling the maskable Level 7 interrupt enables all three of these
sources as a group. However, both the parity and SysFail sources also
have individual enable control bits allowing them to be turned off as an
interrupt source individually while the other active sources in the group
remain in force.

All three of these sources in this group have readable status bits in the
V452 Status register (0xFE38 0002) as listed in the table below. These
bits allow the Level 7 interrupt routine to determine the cause of the
interrupt and take the appropriate action.

Section 3: Board Facilities

Interrupts

3-14 V452 User Guide

Status register bits for Interrupt Level 7 sources

Bit When 0 When 1
0 No parity error Parity error
1 ABORT/Level 7 int. requested ABORT/int. not requested
2 SysFail\ present on VMEbus SysFail\ not present
3 ACFail\ present on VMEbus VME ACFail\ not present

The paragraphs below describe each of the Level 7 interrupt sources in
greater detail.

Parity error — V452 Series boards provide parity checking for all
on-board DRAM which can be either enabled or disabled by
writing an appropriate value to the Primary Mode register. The
V452 Series interrupt circuitry asserts a Level 7 interrupt request
whenever the following three conditions are met:
• parity checking is enabled,
• the miscellaneous Level 7 interrupt source is enabled (to

CPU-X and/or CPU-Y),
• a parity error is encountered.

Note If desired, it is possible to disable parity
checking by writing to the Primary Mode
register (at 0xFE38 0003). For more in-
formation, see the Dynamic RAM
chapter in Section 4.

Remote VME SysFail — If interrupts from the maskable Level
7 sources have been enabled and the SysFail interrupt has been
enabled (by writing to a register on the 2692 DUART), V452
Series boards request a Level 7 interrupt whenever the VME
SysFail signal is asserted by another device on the VMEbus. This
condition persists until the device in question stops asserting
SysFail.

Note For more information about enabling the
VME SysFail interrupt, see the System
Controller chapter in Section 5.

ACFail signal — If interrupts from the maskable Level 7 sources
have been enabled, V452 Series boards request a Level 7
interrupt whenever the ACFail signal is detected. The ACFail sig-
nal warns of the loss of AC power to the system power supply
before individual boards on the VMEbus actually lose their DC
power. The length of the interval between the loss of the
system’s AC power and the loss of DC power on an individual

Section 3: Board Facilities

Interrupts

V452 User Guide 3-15

board is dependent on many factors including the capacitive
characteristics of the system power supply and the total power
load of the boards in the system.

This signal can be used to trigger an interrupt routine which can
in turn direct internal circuitry to complete an orderly shut-down
before the loss of DC power.

Timers

V452 Series boards provide two independent timer interrupt sources
(one from each of the two 2692 UARTs). Timers A and C are steerable
interrupt sources. On dual-CPU boards, this means that each timer
interrupt source can be configured for use with either CPU.

These interrupt sources are provided to allow systems programmers to
use different interrupt vectors for the 2692 timers (system tick clock)
verses the 2692’s console input/output functions.

Although a timer interrupt is available via the 2692’s internal interrupt
mechanism, use of this mechanism is often impractical because it must
deal with both the clock and serial I/O interrupts. By providing a sepa-
rate timer interrupt, the V452 board’s interrupt circuitry makes it much
easier for system programmers to use timer and serial port interrupts
together.

On single-processor boards only one
timer should be used as an interrupt
source at the same interrupt level at the
same time. The other timer can be used
for timing functions, but should not be
used as interrupt source.

The timer interrupt from each chip is asserted by the OP3 pro-
grammable output pin which can be programmed to generate a square
wave whose period is the same as the timer. The 2692 asserts the timer
interrupt whenever OP3 goes low.

Timers interrupts remain in force until cleared via software. To clear a
timer interrupt, disable the timer as an interrupt source and then re-
enable it. For example an interrupt from Timer A to CPU-X could be
cleared by executing the following 68000 assembler commands:

moveb #0x00, 0xFE390004 |Disable timer int. source
moveb #0x00, 0xFE390005 |Re-enable timer int. source

Section 3: Board Facilities

Interrupts

3-16 V452 User Guide

For more information, see the Timers & counters chapter in Section 4
or refer to the manufacturer’s data sheet that is included for the 2692
DUART. For a code example, see the Timer code example and 2692
DUART code example chapters in Section 6.

Asynchronous serial interface (2692)

V452 Series boards provide two asynchronous serial interface sources
for the four asynchronous serial ports on the front panel as shown in
the figure below (one source each from the two on-board 2692
UARTs):

Serial interrupt source A carries interrupt signals corresponding
to the asynchronous serial ports A (P5) and B(P6).

Serial interrupt source B carries interrupt signals corresponding
to the asynchronous serial ports C (P7) and D (P8).

Serial interrupt sources A and B and steerable interrupt sources. On
dual-processor V452 Series boards this means that each asynchronous
serial interrupt source can be configured for use with either CPU.

An interrupt from the V452 Series asynchronous serial interface means
that one of the 2692 DUARTs has sensed some event for which it has
been programmed to generate an interrupt, such as timer time-out,
received character, transmitter empty, etc.

The “interrupt status“ byte from the 2692s indicates which event(s) gen-
erated the interrupt. In general, the level 5 (standard) autovector inter-
rupt routine would check this status byte and then jump to the appro-
priate service routine.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-17

0 X

Async Serial I/O
Ports (2692)

Serial I/O

V452

Serial Port A
RS-232/RS-422

Serial Ports B & D
RS-232 only

Serial Port C
RS-232/RS-422

Ethernet
A

C
B/D

Asynchronous serial I/O ports

EZ-bus modules

The EZ-bus daughter modules (if present) can be configured either to
generate a Level 4 autovector, or provide their own interrupt vector
number depending on the daughter module in use. The meaning of the
daughter module interrupt also depends on the nature of the daughter
module being used.

EZ-bus modules A and B are steerable interrupt sources. On dual-
processor V452 Series boards this means each module can be
configured for use with either CPU.

For more information, see the EZ-bus interface chapter in Section 5 and
the manual accompanying the EZ-bus module in use.

Section 3: Board Facilities

Interrupts

3-18 V452 User Guide

CPU Mailbox

V452 Series boards provide CPU mailbox circuitry that can receive
messages to the on-board multi-ported memory space from either the
local CPU or an external VME or EZ-bus Master. The CPU “reads” these
4-bit messages from a 64x4 Mailbox FIFO in local I/O space.

CPU Mailboxes 0 and 1 are non-steerable autovector Level 3 interrupt
sources. On dual-processor V452 Series boards this means that the
CPUs can receive interrupts only from their own mailbox circuitry (i.e.,
Mailbox 0 to CPU-X and Mailbox 1 to CPU-Y). Both CPU mailboxes can
be active interrupt sources at the same time (on dual-processor boards).

If the mailbox interrupt is enabled, the CPU mailbox circuitry interrupts
the corresponding CPU as an autovector Level 3 source whenever it
receives a message. The mailbox is able to hold up to 64 separate mes-
sages and sends an interrupt to the CPU for each message received.

For more information, see the CPU Mailbox chapter in Section 4.

82C54 counter

The V452 Series boards provide two autovector Level 2 interrupt
sources from the on-board 82C54 CHMOS programmable interval
timer. The 82C54 can be used as an event timer, elapsed time indicator,
programmable one-shot, or other counter application.

The 82C54 provides three 16-bit counters of which only two (Counter 0
and Counter 1) can assert an interrupt. These two counters are non-
steerable interrupt sources. On dual-processor V452 Series boards this
means that the CPUs can receive interrupts only from their own
counter (i.e., Counter 0 to CPU-X and Counter 1 to CPU-Y). Both
Counters can be active interrupt sources at the same time (on dual-
processor boards).

Counter interrupts remain in force until cleared via software. To clear a
counter interrupt, disable the counter as an interrupt source and then
re-enable it. For example, an interrupt from Counter0 to CPU-X could
be cleared by executing the following two 68000 assembler com-
mands:

moveb #0x00, 0xFE39000E |Disable counter int. source
moveb #0x00, 0xFE39000F |Re-enable counter int. source

Section 3: Board Facilities

Interrupts

V452 User Guide 3-19

Local bus timeout
The V452 Series boards include a local bus timeout circuit that
generates a bus error if an individual bus transfer (or individual BLT) ex-
ceeds 30 microseconds. The local bus timeout generator provides a
convenient method for checking for the presence or absence of an in-
stalled EZ-bus module(s). Attempting a transfer via an absent daughter
module causes a local bus error, thereby providing a graceful exit from
the faulty condition.

Note This local bus timer is automatically dis-
abled whenever the CPU (or an EZ-bus
module acting as the VME Master) is per-
forming transfers across the VMEbus. In
this case, the System Controller monitors
the progress of the transfer and generates
a VMEbus error if necessary.

VMEbus interrupt handler
The VMEbus specification establishes a systematic method by which
one board can interrupt another board on the same bus. VME interrupts
are requested by a board called the interrupter that asserts an interrupt
at a particular interrupt level (Level 7 – 1). VME interrupts are serviced
by a board on the bus called the interrupt handler that responds to
interrupts at a single or a contiguous range of interrupt levels.

Note If using the VMEbus Interrupt Handler,
do not use interrupt Level 4 if the V452
Series board is installed with a daughter
board. This will avoid conflict with EZ-bus
interrupts.

The paragraphs below describe the sequence of events that occur
between the interrupter board and the corresponding interrupt handler
board during a typical interrupt sequence on the VMEbus:

➊ The interrupter generates an interrupt request at a given level via
the VMEbus interrupt request (IRQn*) lines.

➋ The interrupt request is received by the interrupt handler that has
been assigned to that level. The interrupt handler acknowledges
the receipt of the interrupt by generating an interrupt acknowl-
edge cycle. The interrupt acknowledge is passed via daisy-chain
from board to board in the bus starting at the board in Slot 1 and
proceeding to Slot 2, Slot 3 and so on though all of the boards in

Section 3: Board Facilities

Interrupts

3-20 V452 User Guide

the card cage. The daisy chain automatically skips over empty
slots for which the IACK daisy-chain jumper has been installed.
Each slot (except Slot 1) provides an IACK daisy-chain jumper
near the P1 connector on the back side of the VMEbus
backplane.

➌ The interrupter places an interrupt vector on the bus in response
to the interrupt acknowledge cycle.

➍ The interrupt handler board uses this interrupt vector to direct its
processor to the proper interrupt vector routine.

Each of the seven VME interrupt levels acts as a steerable interrupt
source. On dual-processor V452 Series boards this means that all VME
interrupts can be configured for use with either CPU.

Note If the same interrupt priority is assigned
to both an on-board and a VMEbus
interrupt, the on-board interrupt has
priority over the VMEbus interrupt.

Once configured, the operation of the interrupt handler on the V452
Series board is fairly automatic. The CPU on the V452 Series board is
programmed to respond to one or more VMEbus interrupt levels by
writing to the address corresponding to the desired VMEbus interrupt
level as listed in the table below.

Address locations — Interrupt Control register

Interrupt Disable (default) Enable
VME Level 1 to CPU-X FE39 4002 FE39 4003

VME Level 2 to CPU-X FE39 4004 FE39 4005

VME Level 3 to CPU-X FE39 4006 FE39 4007

VME Level 4 to CPU-X * FE39 4008 FE39 4009

VME Level 5 to CPU-X FE39 400A FE39 400B

VME Level 6 to CPU-X FE39 400C FE39 400D

VME Level 7 to CPU-X FE39 400E FE39 400F

VME Level 1 to CPU-Y FE39 C002 FE39 C003

VME Level 2 to CPU-Y FE39 C004 FE39 C005

VME Level 3 to CPU-Y FE39 C006 FE39 C007

VME Level 4 to CPU-Y * FE39 C008 FE39 C009

VME Level 5 to CPU-Y FE39 C00A FE39 C00B

VME Level 6 to CPU-Y FE39 C00C FE39 C00D

VME Level 7 to CPU-Y FE39 C00E FE39 C00F

* Note: Do not use VME Interrupt Level 4 if daughter board installed on the V452 Series board.

Section 3: Board Facilities

Interrupts

V452 User Guide 3-21

Note After power cycling or local reset, the
V452 Series interrupt handler does NOT
respond to any VMEbus interrupt levels.
Typically, the bootup software/ firmware
configures the interrupt handler to
respond to the desired VMEbus levels.

For example, to enable VMEbus interrupt level 1 to be handled by CPU-
X, the following instruction would be executed:

moveb #0x00,0xFE394003 | Enable level 1 VME ints to CPU-X

To disable CPU-X from handling level 1 VMEbus interrupts, the
following instruction would be executed:

moveb #0x00,0xFE394002 | Disable level 1 VME ints to CPU-X

Once the V452 Series interrupt handler circuitry is configured to re-
spond to the desired VMEbus interrupt(s), the CPU must also be
programmed as follows.

An interrupt vector table must be created in memory that con-
tains the address of the interrupt service routine associated with
each vector.

Each of the interrupt service routines listed in the vector table
must be loaded into memory at the address listed in the table.

The CPU must be told where in memory to find the start of the
vector table mentioned above. This is done by writing the
starting memory address of the vector table in the CPU’s internal
Vector Base register.

Note Creating a vector table and service rou-
tine in memory and programming the
Vector Base register in the 68040/68060
are identical to the methods used on
preceding members of the 68000
processor family. For more information,
consult the Motorola programmers guide
for the applicable CPU.

Once the V452 Series board’s interrupt handler and the CPU have
been programmed to respond to VMEbus interrupts as described
above, the CPU will respond to the configured VMEbus interrupt level
and have its execution temporarily directed to the interrupt service
routine according to the vector addresses stored in its vector table.

Section 3: Board Facilities

Interrupts

3-22 V452 User Guide

Configuring the VMEbus interrupter/resetter
The V452 Series VMEbus interrupter can assert interrupts to the
VMEbus at any one of seven VMEbus interrupt priority levels and
corresponding to any one of the 256 possible 68000 interrupt/
exception vectors. This same circuitry can be used to assert the VMEbus
Reset signal to cause a local reset of each board on the VMEbus.

To ensure that it is able to assert the
VMEbus System Reset signal for a long
enough period to ensure that all boards
on the bus are reset, the V452 Series
board cannot respond to this signal itself.
Thus before V452 Series boards can be
used to assert the VMEbus System Reset
signal, the board must also be configured
to ignore the VMEbus System Reset
signal itself. For information about setting
up the board to ignore the VME System
Reset signal, refer to the Reset via
software discussion in the Default and
reset conditions chapter in Section 3.

Setting the VME interrupt level

The level of the VME interrupt asserted by the interrupter is set by
writing to a pair of registers that reside on one of the board’s 2692 dual-
UART. The general-purpose output bits 5, 6, & 7 for the 2692 select the
interrupt level that is used as listed in the table below:

VME interrupt level / VME reset configuration values

Interrupt Programmable bits Write to Write to
level 7 6 5 FE28003F FE28003B

Assert VMEbus Reset 0 0 0 0x00 0x0E
1 0 0 1 0x20 0xC0
2 0 1 0 0x40 0xA0
3 0 1 1 0x60 0x80
4 1 0 0 0x80 0x60
5 1 0 1 0xA0 0x40
6 1 1 0 0xC0 0x20
7 (default) 1 1 1 0xE0 0x00

Section 3: Board Facilities

Interrupts

V452 User Guide 3-23

Note In the default condition after a reset or
power cycle, these 2692 registers select
a VME Level 7 interrupt.

For example, to set up the board to assert a Level 5 interrupt, execute
the following two 680x0 assembler commands:

moveb #0xA0, 0xFE28003F |Select Level 5 VME interrupt
moveb #0x40, 0xFE28003B |Select Level 5 VME interrupt

The two register locations on the 2692
DUART that are used to set the VME in-
terrupt level asserted by the VME inter-
rupter (0xFE28 003F, 0xFE28 003B) are
also used to configure several other criti-
cal functions on V452 Series boards
including VME SysFail reception, Serial
Port B enable/disable and hardware
handshaking (RTS) enable/disable. As a
result, exercise due caution when writing
to these locations. For information about
the other functions controlled by these
2692 registers, see the V452 Series
internal registers chapter in this section.

Setting the vector for VME interrupts

The 8-bit VME interrupt vector register (0xFE30 0000) supplies the
680x0 interrupt/exception vector for an asserted VME interrupt. Writing
a byte to the VME Interrupt Vector register configures the vector num-
ber driven to the VMEbus during the interrupt acknowledge cycle. For
example, the VME interrupter vector could be set to 0x50 by executing
the following 680x0 assembler instruction:

moveb #0x50, 0xFE300000 | set VME int. vector to 0x50

The interrupter generates an interrupt by first resetting the interrupter
circuit then invoking the interrupter once. The code sequence in 680x0
assembly language is:

moveb #0x07,0xFE380003 | reset interrupter
moveb #0x0F,0xFE380003 | invoke interrupter

Section 3: Board Facilities

Interrupts

3-24 V452 User Guide

Note For a complete list of all the interrupts/
exceptions and their associated vectors
for the 68040/68060 and V452 Series
boards, see the appropriate 680x0 CPU
chapter in Section 4 or the V452 Series
Quick Reference Card.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-25

Jumpers, switches, LEDs & Fuses

This chapter identifies the user-selectable jumpers, switches, LED in-
dicators and fuses on V452 Series boards.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-26 V452 User Guide

Jumpers
The table below lists the V452’s user-selectable jumper blocks. The
location for these jumper blocks is shown in the drawing below.

V452 Series user-selectable jumper blocks

Jumper block Function For more info, see (chapter)
JK12 Monitor EPROM type selection EPROM
JK17 Flash EPROM Write

 Enable/Disable
VME Master request level select
Remote Reset Enable
Round Robin Enable
System Controller Force Disable
Flash Boot Enable

EPROM/Flash Memory
 Module
VME Master interface
VME Slave interface
VME Master interface
System Controller
EPROM/Flash Memory
 Module

JK12 JK17

V452
Component

side

P1P2

P3

P4

P9

CPU-X

CPU-Y
(Optional)

P10

P1

V452 Series jumper locations

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-27

The figure below shows the jumper settings to configure V452 Series
boards. The jumper assignments are summarized in the following tables.

JK12

JK17

PROM 0
Control

Flash
 EPROM
Installed

Normal
EPROM
Installed

Flash
EPROM
Installed

Normal
EPROM
Installed

PROM 1
Control

Logical
1

(open)
☞ ☞

Logical
0

(closed)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

To
Serial
Ports

ID Switch
(FE38 0003)

Polarity

* Install jumper here to disable writing
† Omit jumper for Priority Arbitration
§ Omit jumper to allow EPROM Boot

Level 2

Level 3 (highest)

Enabled
Disabled*

Bus Request
Level

Remote Reset Enable
Round Robin Enable†
SysCon Force Disable

Level 0 (lowest)

Level 1

Flash Write
Enable/Disable

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

17 18Flash Boot Enable§

V452 Series jumper settings

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-28 V452 User Guide

JK12 jumper assignments

Flash EPROM installed Normal EPROM installed

PROM0, JK12 jumpers on pins: 1 & 3, 2 & 4 3 & 5, 4 & 6

PROM1, JK12 jumpers on pins: 7 & 9, 8 & 10 9 & 11, 10 & 12

JK17 jumper assignments

Enable Disable

Flash Write 1 & 2 3 & 4

Bus Request Level 01 5 & 7 —

Bus Request Level 11 7 & 9 —

Bus Request Level 21 6 & 8 —

Bus Request Level 31 8 & 10 —

Remote Reset Enable Jumper installed on 11 & 12 Jumper removed from 11 & 12

Round Robin Enable2 Jumper installed on 13 & 14 Jumper removed from 13 & 142

System Controller Force Disable Jumper installed on 15 & 16 Jumper removed from 15 & 16

Flash Boot Enable3 Jumper installed on 17 & 18 Jumper removed from 17 & 183

Notes: 1. Bus request level set by software if no jumpers installed for bus request level.
2. Board set to Priority Arbitration with jumper removed from 13 & 14.
3. Board boots from EPROM with jumper removed from 17 and 18.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-29

Front panel
The drawing below shows the layout of the connectors, controls, and
indicators on the V452 front panel.

7
6
5
4

3
2
1
0

Fail

DbA

Slv

X
Y
Mst
DbB

Halt

R
E
S
E
T

A
B
O
R
T

0

7

X

Y8-bit ID
switch

User
Application
LEDs (0-7)

CPU/Bus
Activity
LEDs

RJ-45
Jacks

(Async Serial
Ports)

Abort/Reset
switches

Serial I/O10Base-T
Ethernet Jack

V452

Ethernet
A

C
B/D

Link OK
LED (Yel)

Transmit
LED (Grn)

V452 Series front panel

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-30 V452 User Guide

8-bit ID switch (front panel)
The eight position ID switch on the front panel of the V452 Series
provides an 8-bit software-readable ID switch.

Readable switches can be very useful in target applications where
applications programs can read the switch to discover what their
function should be, the nature of their peripherals, etc.

The CPU reads the switch setting by performing a byte-wide read to the
ID Status register at memory location 0xFE38 0003. The figure below
shows the register bits corresponding to each of the eight switch
positions.

Logical 1
(open) ☞ ☞ Logical 0

(closed)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

To
Serial
Ports

ID switch polarity

Numbering may appear on the switch
component itself that conflicts with the
numbering shown above. Ignore all
numbering schemes except what is
shown above and on the Quick Refer–
ence Card.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-31

Toggle switches
V452 Series boards provide RESET and ABORT switches that allow you
to apply these functions to the on-board CPUs:

RESET Asserts either a CPU or board-level RESET as de-
scribed in the figure and text below:

Pushing one of the switches to the right asserts a
CPU-level RESET to the corresponding CPU. The
CPU-X (top) switch asserts a reset to the CPU on
single CPU models and to CPU-X on the dual
CPU models. The CPU-Y switch (bottom) asserts
a reset to CPU-Y which has an effect only on dual
CPU models.

Pushing both switches to the right at the same
time asserts a board-level reset on all V452 Series
models:

Resets the CPU(s).

Resets all on-board components that have
such a function and clears all on-board
control registers.

Asserts a VME RESET if the board is serving
as the System Controller.

For more information, see the Default & reset
conditions chapter in Section 3 and the System
controller chapter in Section 5.

ABORT Pushing either switch to the left as shown in the
figure above asserts an ABORT to the respective
CPU. Assert an ABORT stops the current process
by issuing a non-maskable level 7 interrupt (nmi).

Pushing the bottom switch to the left has no ef-
fect on single processor boards.

The ABORT switch is always assigned to interrupt
level 7 and cannot be set to another level. For
more information, see the Interrupts chapter in
this section.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-32 V452 User Guide

R
E
S
E
T

A
B
O
R
T

☞
CPU-X Switch (all models)
 Push left to assert ABORT

 CPU-Y Switch (dual-CPU models)
 Push left to assert ABORT ☞

X

Y

A
Close-up of RESET and ABORT switches

LEDs
Shown below are the V452 front panel LEDs which provide a quick
visual indication of board activity. The following discussion describes
the function of these LEDs.

7
6
5
4

3
2
1
0

Fail

DbA

Slv

X
Y
Mst
DbB

Halt

User
Application

LEDs (Yellow, 0-7)

CPU/Bus
Activity

LEDs (Red/Green)

Serial I/O

Ethernet
10Base-T LEDs

V452

Ethernet

Link OK LED
(Yellow)

Transmit LED
(Green)

V452 Series LEDs

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-33

The eight yellow LEDs indicate application events:

0 - 7 Software-programmable LEDs are controlled by
the V452 Series’s Primary and Extended Mode
registers. They indicate the current operating
mode of the board as defined by the software
currently running.

For more information about how to program
these LEDs, see the chapter on the V452 Series
internal registers which follows this chapter.

The two red LEDs indicate the run status of the board:

Fail Indicates the SysFail status of the board.

When the CPU is reset (either by the VMEbus
SysRes\ line or the front panel RESET toggle), the
Fail LED turns on and the board drives the VME
SysFail\ signal.

During normal operation the system boot soft-
ware clears this condition shortly after RESET. The
SysFail LED and driver signal are cleared by per-
forming a write of a 0C to the Primary Mode reg-
ister at 0XFE38 0003. The program may also turn
this LED on (i.e. assert SysFail on the VMEbus) by
writing a 04 to 0xFE38 0003.

Halt On single-68040 model boards, this LED provides
a visual indication that the on-board CPU has
HALTed.

On dual-processor boards, this LED indicates that
one or both CPUs has HALTed. If only one CPU
has HALTed, it is possible to identify which one
by also looking at the X and Y LEDs (described
below). Generally, the LED for the HALTed CPU
is NOT lit. However, this indication is very de-
pendent on the application being run and how
closely coupled the two CPUs are operating.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-34 V452 User Guide

The six green LEDs indicate the device currently in control of the V452
Series board’s local bus and/or the VMEbus:

DbA / DbB Indicate that either the first or second installed EZ-
bus daughter module (A or B) is in control of the
board’s local bus. These LEDs are active only if
one or two EZ-bus modules (that can take control
of the bus) have been installed.

For more information about EZ-bus modules, see
the the EZ-bus interface chapter in Section 5.

Slv Indicates that an external VMEbus Master is in
control of the local bus and the board is acting as
a VMEbus Slave.

For more information, see the VME Slave
interface chapter in Section 5.

Mst Indicates that the V452 Series board is acting as
the Master on the VMEbus.

For more information, see the VMEbus Master
interface chapter in Section 5.

X Indicates that CPU-X is currently in control of the
local bus. CPU-X is installed on all V452 Series
boards.

Y Indicates that CPU-Y is currently in control of the
local bus. CPU-Y is installed only on dua l-
processor V452 Series boards.

The two LEDs on the onboard Ethernet 10Base-T jack indicate Ethernet
port status as follows:

Yellow Link OK – lit when 10Base-T cable is properly
plugged into a functioning 10Base-T network.

Green Transmit – lit whenever port passes data.

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

V452 User Guide 3-35

Fuses
The table below lists the fuses used on the V452 SBC. All fuses are
surface-mounted devices which are factory replaceable parts only. The
drawing below shows where these fuses are located on the SBC.

Fuse listing, V452

Fuse ref. designation Rating Resettable?* (Yes/No)
FK11 5V @ 10A No
FK18 +12V @ .75A Yes
FL18 –12V @ .75A Yes
FK29 +3V @ 5A No

* To reset fuse, remove power for minimum of 20 seconds then reapply power.

P1P2

P3

P4

CPU-X

CPU-Y
(Optional)

JK17
JK12

FK11
+5V @ 10A

FL18
-12V @ .75A

FK18
+12V @ .75A

FK29*
+3V @ 5A

* This fuse present
only with 160-pin
P1/P2 option.

V452
Component Side

R45x
Memory Module

R45x
Memory Module

Fuse locations, V452

Section 3: Board Facilities

Jumpers, switches, LEDs & fuses

3-36 V452 User Guide

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-37

V452 Series internal registers

This chapter describes the contents and use of the internal registers
provided on V452 Series boards to monitor and control the operation
of various on-board features and functions. These registers fall into one
of the following four categories:

Status registers — are read-only registers that indicate the status
or condition of on-board devices or processes. Using these
registers involves reading the register and interpreting the bit
pattern found there.

Mode registers — are write-only registers that set up the board to
perform a given operation or function. Mode registers are
address and data-specific. Using a Mode register involves writing
a particular hexadecimal value to a specific address location.

Control registers — are write-only registers that also set up the
board to perform operations or functions. However, Control
registers are only address-specific. Using a Control register
involves writing to a specific address location; the hex value of
the data that is written DOES NOT matter.

Note For purposes as setting a convention for
software coding, all sample instructions
to perform writes to Control registers
appearing in this manual will specify a
0x00 hex value even though any value
could be used.

Board information registers — are read-only registers that
provide the system with ID and configuration information per
the VME64 extensions specification.

Section 3: Board Facilities

V452 Series internal registers

3-38 V452 User Guide

Status register
The 8-bit Status register indicates the presence or absence of various
signals or the status of certain processes on the local or VMEbus.
Application programs can determine the operating status of the board
by reading the Status register bits using either of the methods listed be-
low:

A byte read at 0xFE38 0002 reveals the Status register bits listed
below.

A word read of the Status register at 0xFE38 0002 reveals both
the Status register bits and the ID switch register (described later
in this chapter). In the resulting word, the Status register bits are
shifted to the left by eight bits to most significant byte (8-15) and
the ID switch bits appear in the least significant byte (0-7).

Status register bits

Bit When 0 When 1 For more info, see chapter

0 No parity error Parity error Dynamic RAM
1 ABORT/Level 7 int. requested ABORT/int. not requested Interrupts
2 SysFail\ present on VMEbus SysFail\ not present Interrupts
3 ACFail\ present on VMEbus VME ACFail\ not present Interrupts
4 Block Transfer error asserted No BLT error VME Master BLT
5 Other CPU halted Other CPU running 68040/68060 CPU
6 Single 68040 configuration Dual 68040 configuration** 68040/68060 CPU
7 CPU-X controls the local bus CPU-Y controls the local bus* 68040/68060 CPU

Note: * For single CPU boards, these bits always = 0.
 ** Requires a PROM to be installed in both monitor PROM sockets.

Note Status bit 7 indicates which CPU has con-
trol of the bus. On dual-CPU boards, this
bit can be used by either CPU to identify
itself. By accessing this bit, the CPU takes
control of the local bus, thus Status regis-
ter bit 7 serves as a “mirror” of sorts, al-
lowing the CPU in control to identify it-
self.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-39

ID status register
The register containing the settings for the 8-bit ID switch on the front
panel is located at 0xFE38 0003 (read access).

ID switch bits

Bit When 0 When 1 For more info, see chapter

0 - 7 Switch closed (to right) Switch open (to left) Jumpers, switches, LEDs &
fuses

Logical 1
(open) ☞ ☞ Logical 0

(closed)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

To
Serial
Ports

ID switch polarity

This register can be accessed in two ways:

Performing a byte read at 0xFE38 0003 reveals the current state
of all eight positions of the ID switch in bits 0 - 7.

Performing a word read of the Status register at 0xFE38 0002 is
a convenient way to access both the eight Status register bits
(described earlier in this chapter) and the 8 ID switch settings. In
the resulting word, the Status register bits are shifted to the left
by eight bits to most significant byte (8 -15) and the ID switch
bits appear in the least significant byte (0-7).

For more information about using the ID switch, see the Jumpers,
Switches, LEDs and fuses chapter in this section.

Section 3: Board Facilities

V452 Series internal registers

3-40 V452 User Guide

Mode registers
The V452 Series uses the following Mode registers to control various
on-board functions as described in the paragraphs below:

the Primary Mode register is located at address 0xFE38 0003
(write access only). It controls half of the front panel user LEDs
and various other functions.

the Extended Mode register is located at address 0xFE38 4003
(write access only). It controls the remaining half of the front
panel user LEDs and various other functions.

V452 Series boards use several of the general purpose mode
registers in the 2692 UART to control reception of the VMEbus
SysFail\ signal, to operate the VMEbus interrupter, and to enable
serial ports B and D.

the 8-bit, VME interrupt vector register (0xFE30 0000) on V452
Series supplies the 680x0 interrupt/exception vector for the
asserted VME interrupt.

Using Mode register functions

Activating a Mode register function involves writing the appropriate
hexadecimal data value to the appropriate Mode register:

For example, turning off LED 0 would require writing 08 to the Primary
Mode register at 0xFE38 0003 using the following 68040 instruction:

moveb #0x08, 0xFE380003

Enabling the V452 Series VME Slave interface would require writing 0F
to the Extended Mode register at 0xFE38 4003 using the following
68040 instruction:

moveb #0x0F, 0xFE384003

Mode register conditions after Reset

After power cycling or a system reset, both mode registers return to
their pre-initialized default conditions. In the tables to follow these de-
fault values are identified.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-41

Primary & Extended Mode registers

The tables below list the functions controlled by the Primary and
Extended Mode registers and the data value required to invoke them.

Primary Mode register (Mode1; 0xFE38 0003)

Hex data Function For more info, see chapter

00 Turn on LED 0 (default) V452 Series internal reg.
01 Turn on LED 1 (default) "
02 Turn on LED 2 (default) "
03 Turn on LED 3 (default) "
04 Turn on SysFail\ light and bus signal (default) ", Interrupts
05 Turn VME Slave memory protection off (default) VME Slave interface
06 Disable on-board RAM parity error reporting (default) "
07 Reset VMEbus interrupter Interrupts
08 Turn off LED 0 V452 Series internal reg.
09 Turn off LED 1 "
0A Turn off LED 2 "
0B Turn off LED 3 "
0C Turn off SysFail\ light and bus signal ", Interrupts
0D Turn memory protect on VME Slave interface
0E Enable on-board RAM parity error reporting "
0F Invoke VMEbus interrupter/resetter once Interrupts

Extended Mode register (Mode2; 0xFE38 4003)

Hex data Function For more info, see chapter

00 Turn on LED 4 (default) V452 Series internal reg.
01 Turn on LED 5 (default) "
02 Turn on LED 6 (default) "
03 Turn on LED 7 (default) "
04 Disable CPU Watchdog Run monitor (default) CPU Watchdog
05 Disable EZ-bus snooping (default) 68040/68060 CPU
06 Disable VMEbus snooping (default) 68040/68060 CPU
07 Disable Slave access from VMEbus Masters (default) VME Slave interface
08 Turn off LED 4 V452 Series internal reg.
09 Turn off LED 5 "
0A Turn off LED 6 "
0B Turn off LED 7 "
0C Enable CPU Watchdog Run monitor CPU Watchdog
0D Enable EZ-bus snooping 68040/68060 CPU
0E Enable VMEbus snooping 68040/68060 CPU
0F Enable Slave access from VMEbus Masters VME Slave interface

Section 3: Board Facilities

V452 Series internal registers

3-42 V452 User Guide

Controlling the User LEDs

The eight user-programmable LEDs on the front panel of V452 Series
boards are among the functions controlled by the Mode register. The
paragraphs below describe two methods for controlling the user LEDs
via the Mode register.

Manual
method

This method involves setting each LED manually
by writing the appropriate hex value directly to
the Mode register.

Arbitrary
Pattern algo-
rithm

This second method uses a modular algorithm
that automates display of all four LEDs in a pro-
gram loop. Using this algorithm (which is in-
cluded) it is possible to specify an LED pattern by
performing a single write instruction as input to a
program loop, rather than by performing four
separate write instructions as required for the
manual method.

Controlling the User LEDs manually — The first method for controlling
the user LEDs involves writing directly to the Mode register to control a
specific LED. Each LED has a hex data value associated with its ON and
OFF state as listed in the table below:

Mode register (0xFE38 0003) bit definitions for LED functions

Hex data Function

00 Turn ON LED 0 (default)

01 Turn ON LED 1 (default)

02 Turn ON LED 2 (default)

03 Turn ON LED 3 (default)

04 - 07 Other functions *

08 Turn OFF LED 0

09 Turn OFF LED 1

0A Turn OFF LED 2

0B Turn OFF LED 3

0C - 0F Other functions *
* For more information about the other Mode register functions, see the complete Mode

register table on the previous pages.

For example, it is possible to turn ON LED 3 using the following 68000
assembler instruction.

moveb #0x03, 0xFE380003

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-43

Arbitrary LED control — The second method for controlling the user
LEDs uses a function written in C that is listed on the next page. This
function accepts a single hex integer (from 0x0–0xF) to specify a 4-bit
LED pattern (either LEDs 0–3 or LEDs 4–7).

The LED “bank” this function controls at any given moment depends on
which CPU is in control of the local bus when the function is invoked
(as indicated by Bit 7 of the Status register).

When CPU-X is in control of the bus and Status register bit 7 is 0, the
DisplayLED function writes a 4-bit pattern to LEDs 4–7 which are the
four yellow user LEDS ABOVE the green CPU-X LED as shown in the
cut away view of the V452 Series front panel below. When CPU-X is in
control of the bus, Status register bit 7 is 0, the DisplayLED function
writes a 4-bit pattern to LEDs 4-7 which are the four yellow user LEDS
ABOVE the green CPU-Y LED.

E
T

R
T

7
6
5
4

3
2
1
0

Fail

DbA

Slv

X
Y
Mst

DbB

Halt

V452 Series LEDs

Note The DisplayLED function on the next
page is specifically written for a dual-CPU
V452 Series model to provide each CPU
with four separate user LEDs. Thus, using
this function without modification on a
single-CPU V452 Series board would
allow the one CPU to use only four of
the 8 available LEDS. Providing a single
CPU with access to all 8 LEDs would
require modification of the code.

Section 3: Board Facilities

V452 Series internal registers

3-44 V452 User Guide

Display LED function (in C)

#define Primary ModeReg 0xFE38 0003
#define ExtendedModeReg 0xFE38 4003
#define LED_Off 0x08

* The Display LEDS function - displays the lowest 4 bits of a passed value in either the right LED bank (0-3)
or left LED bank (4-7) depending on which CPU is in control of the local bus at that moment. This function
automatically associates CPU-X activities with the left LED bank (4-7) and CPU-Y activities with the right
LED bank (0-3).

DisplayLEDS(int value)
{
 u_char *LEDRegister;
 int i;

 if (isCPU-X) /* If status register bit 7 = 0; CPU-X has bus
 {

LEDRegister = (u_char *)ExtendedModeReg; /* Adjust LEDs 4-7 via Extended mode reg.
 }
 else if (isCPU-Y) /* If status register bit 7 = 1; CPU-Y has bus
 {

LEDRegister = (u_char *)PrimaryModeReg; /* Adjust LEDs 0-3 via Primary mode reg.
 }

 for(i = 0; i < 4; i++)
 if (value & (1<<i))

LEDRegister = i; / Sets the "ith" LED to default state or ON
 else

LEDRegister = (i | LED_Off); / Turns the "ith" LED off
}

Consider the following LED display pattern:

LED 0 or 4 — ON
LED 1 or 5 — OFF
LED 2 or 6 — ON
LED 3 or 7 — OFF

If expressed as a 4-bit binary value, this LED ON/OFF pattern equals
0101 which in turn equals 0x5 in hexadecimal.

Thus, if the DisplayLED function were invoked and passed the 0x05 hex
integer value while CPU-Y had the bus the LED pattern listed above
would appear on LEDs 0–3.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-45

2692 mode registers
V452 Series boards use the user-programmable Input Port (IP) and
Output Port (OP) registers on the two 2692 dual-UARTs to control sev-
eral on-board functions. The figure below is a schematic of the interface
for the 2692's user-programmable Input and Output ports.

TxD-C

RxD-C

RTS-C

CTS-C

Serial
Port

C

Serial
Port

D

System
Control

functions

TxD-D

RxD-D

RTS-D

CTS-D

IP0

OP0

IP1

OP1

Timer /
counter
(CT-C) OP3

IP2

OP4

OP2

Crystal
3.6864 MHz

Level 6 interrupt
signal (CT-C)

Serial Port D
Enable

2692 DUART [CD] - optional

OP6

OP5

OP7

TxD-A

RxD-A

RTS-A

CTS-A

Serial
Port

A

Serial
Port

B

System
Control

functions

TxD-B

RxD-B

RTS-B

CTS-B

IP0

OP0

IP1

OP1

Timer /
counter
(CT-A) OP3

IP2

OP4

OP2

Crystal
3.6864 MHz

Level 6 interrupt
signal (CT-A)
SysFail
Reception cntrl

Serial Port B
Enable

2692 DUART [AB]

VME
interrupter
control

OP6

OP5

OP7

V452 Series 2692 interface (IP & OP registers)

The four tables on the facing page summarize the bits in the 2692 that
are used by V452 Series boards to control the 2692 functions shown
above and lists the address location for each IP and OP bit.

Section 3: Board Facilities

V452 Series internal registers

3-46 V452 User Guide

2692 [ABCD] Input Port (IP) functions (Read only)

2692 Input Port
(IP) bit

FE28 0037
(Read address)

FE20 0037
(Read address)

IP0 Read CTS-A Status Read CTS-B Status

IP1 Read CTS-C Status Read CTS-D Status

IP2 Ext. Crystal Input to Timer CT-A
(3.6864 MHz)

Ext. Crystal Input to Timer CT-C
(3.6864 MHz)

2692 [ABCD] Output Port Configuration [OPCR] functions (Write only)

2692 Input Port
(IP) bit

FE28 0037
(Write address)

FE28 0037
(Write address)

OPCR Enable CT-A Level 6 interrupt (0x4) Enable CT-C Level 6 interrupt (0x4)

2692 [AB] Output Port [OP] functions (Write only)

2692 Output
Port (OP) bit

FE28 003B FE28 003F

OP0 Assert RTS-A Deassert RTS-A

OP1 Assert RTS-B Deassert RTS-B

OP2 Enable SysFail Reception Disable SysFail Reception

OP3 Timer (CT-A) Level 6 interrupt signal * —

OP4 Enable Port B Disable Port B

OP5 Set level for VME interrupter Set level for VME interrupter

OP6 Set level for VME interrupter Set level for VME interrupter

OP7 Set level for VME interrupter Set level for VME interrupter
Notes * If configured to do so, the 2692 [AB] uses its OP3 pin to output the Level 6 interrupt sig-

nal from the CT-A timer to the processor. Setting this bit asserts a Level 6 interrupt.

2692 [CD] Output Port [OP] functions (Write only)

2692 Output
Port (OP) bit

FE20 003B FE20 003F

OP0 Assert RTS-C Deassert RTS-C

OP1 Assert RTS-D Deassert RTS-D

OP2 — —

OP3 Timer (CT-C) Level 6 interrupt signal * —

OP4 Enable Port D Disable Port D

OP5 — —

OP6 — —

OP7 — —
Notes * If configured to do so, the 2692 [CD] uses its OP3 pin to output the Level 6 interrupt sig-

nal from the CT-C timer to the processor. Setting this bit asserts a Level 6 interrupt.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-47

Note These functions shown in the diagram on
the facing page and the table above rep-
resent only the functions assigned to the
“user-programmable” pins and registers
on the 2692. The 2692 contains various
other readable and writeable registers
that control various serial communica-
tions and timer/counter functions. For
more information about using these reg-
isters, see the Timers & counters chapter
in Section 4 and the Asynchronous serial
interface chapter in Section 5 and/or the
2692 DUART datasheet in the VME CPU
Datasheet Supplement which is supplied
with this manual.

Enabling serial ports B and D

In the default condition after a reset or power cycle of the V452 Series
board, serial ports B and D are disabled by the DUART’s OP4 output
driving the corresponding line driver’s TxD and RTS lines to the high
impedance mode (tri-state).

To enable serial port B, execute the following 680x0 assembler instruc-
tion:

moveb #0x10, 0xFE28003B ;enable TxD, RTS

To enable serial port D, execute the following 680x0 assembler instruc-
tion:

moveb #0x10, 0xFE20003B ;enable TxD, RTS

Disabling serial ports B and D

If for some reason you want to disable serial port B, either reset the
board or execute the following 680x0 assembler instruction:

moveb #0x10, 0xFE28003F ;tri-state TxD, RTS

To disable serial port D, either reset the board or execute the following
680x0 assembler instruction:

moveb #0x10, 0xFE20003F ;tri-state TxD, RTS

Section 3: Board Facilities

V452 Series internal registers

3-48 V452 User Guide

Serial ports A and C on V452 Series boards are hardwired to the
enabled state. No tri-state control of line drivers is done on these ports.

Configuring 2692 timer interrupt levels

The timer on each of the 2692 chips can be configured to assert its in-
terrupt via the same pin as the serial port resulting in a Level 5 interrupt
or via a separate pin (OP3) which the processor recognizes as a Level 6
interrupt.

To configure the timer for the Channel A&B 2692 (CT-A) to assert inter-
rupts via the OP3 pin (Level 6), execute the following 680x0 assembler
instruction which writes to the 2692's Output Port Configuration regis-
ter (OPCR):

moveb #0x4, 0xFE28037 |Config CT-A as Level 6 int. source

To configure the timer for the Channel C&D 2692 (CT-C) to assert inter-
rupts via the OP3 pin (Level 6), execute the following 680x0 assembler
instruction:

moveb #0x4, 0xFE20037 |Config CT-C as Level 6 int. source

Writing any other value to these two bits causes the timer on the 2692
to assert its interrupt on the same pin as the serial ports (Level5).

Controlling VME SysFail reception

The VMEbus signal is often monitored by one board in a VMEbus sys-
tem for system integrity purposes. Reception of this signal may be en-
abled or disabled via the general-purpose output bit 2 (OP2) on the
Channel A&B 2692.

In the default condition or after a board-level reset, reception of the
SysFail signal is disabled. To enable reception of the SysFail signal, exe-
cute the following 680x0 assembler instruction:

moveb #0x04, 0xFE28003B

To disable reception of the SysFail interrupt, execute the following
680x0 assembler instruction:

moveb #0x04, 0xFE28003F

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-49

VMEbus interrupter mode register

The V452 Series VMEbus interrupter can assert interrupts to the
VMEbus at any one of the seven VMEbus interrupt priority levels and
corresponding to any one of the 256 possible 68000 interrupt/excep-
tion vectors. Output port bits 5, 6, & 7 (OP5-7) on the Channel A&B
2692 select the level used by the V452 Series board to assert VMEbus
interrupts as listed in the table below. Note that interrupt Level 0 is used
to produce a VME reset (SysRes). Refer to the Interrupts chapter for
more information on programming and using the interrupter.

VME interrupt level configuration values

Desired Programmable bits Write to Write to
interrupt level 7 6 5 0xFE28003B 0xFE28003F

0 (RESET) 0 0 0 0x0E 0x00
1 0 0 1 0xC0 0x20
2 0 1 0 0xA0 0x40
3 0 1 1 0x80 0x60
4 1 0 0 0x60 0x80
5 1 0 1 0x40 0xA0
6 1 1 0 0x20 0xC0
7 (default) 1 1 1 0x00 0xE0

Note In the default condition (after a reset or
power cycle), these 2692 registers select
a VME Level 7 interrupt.

VME interrupt vector register
The 8-bit VME interrupt vector register (0xFE30 0000) supplies the
680x0 interrupt/exception vector for an asserted VME interrupt. Writing
a byte to the VME Interrupt Vector register configures the vector num-
ber driven to the VMEbus during the interrupt acknowledge cycle. For
example, the VME interrupter vector could be set to 0x50 by executing
the following 680x0 assembler instruction:

moveb #0x50, 0xFE300000 | set VME int. vector to 0x50

Section 3: Board Facilities

V452 Series internal registers

3-50 V452 User Guide

Note For a complete list of all the interrupts/
exceptions and their associated vectors
for the 68040 and V452 Series boards,
see the applicable CPU chapter in
Section 4 or the V452 Series Quick
Reference Card.

Control registers
V452 Series provide the following control registers that control and
configure various feature and functions on V452 Series boards:

the Primary control register is located at address 0xFE38 0003
(write access). It controls several miscellaneous functions.

the Extended control register is located at address 0xFE38 4003
(write access). It controls several miscellaneous functions.

the Interrupt control registers are a series of four 8-bit registers
located at addresses 0xFE390000, 0xFE394000, 0xFE398000,
0xFE39C000, (write access). It enables, disables and steers the
reception of on-board interrupts.

the Slave Interface control register is located at address
0xFE388000 (write access). It sets up various aspects of the VME
Slave interface.

the Ethernet/VMEbus control registers start at address
0xFE3A4000 (write access). These registers set up the onboard
Ethernet 10Base-T interface and the VMEbus request level
selection.

Using control register functions

Activating a control register function involves writing to the appropriate
Control register location.

Control register conditions after reset

After power cycling or a system reset, both mode registers return to
their pre-initialized default conditions. The following tables identify
these default values.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-51

Primary & extended control registers

Listed below are the Primary and Extended control register locations:

Primary control register (FE38 C000)

Address Function Description
FE38 C000 ROR release Select Release on Request bus request handling (default)
FE38 C001 RWD release Select Release When Done bus request handling
FE38 C002 non-FAIR requests Selects non-FAIR (normal) bus release handling (default)
FE38 C003 FAIR requests Select FAIR bus release handling
FE38 C004 CPU Watchdog Disable CPU Watchdog Halt monitor (default)
FE38 C005 CPU Watchdog Enable CPU Watchdog Halt monitor.
FE38 C006 VME remote reset Respond to VMEbus reset signal (default)
FE38 C007 VME remote reset Ignore VMEbus reset signal
FE38 C008 Data broadcasting Disable data broadcast mode (default)
FE38 C009 Data broadcasting Enable data broadcast mode
FE38 C00A VME data cache Inhibit VME data cache (default)
FE38 C00B VME data cache Enable VME data cache
FE38 C00C NVRAM/Clk/Cal Default address space (default, 2KB NVRAM)
FE38 C00D NVRAM/Clk/Cal Extended address space (for NVRAM/Clk/Cal w/8KB NVRAM)

FE38 C00E-F reserved —
Notes: 1 Before you can use Data Broadcasting mode, you must perform a few simple hardware

configuration tasks on all boards to be included in a broadcast group. For more informa-
tion, see the Data broadcasting chapter in Section 5.

Extended control register (FE3A 0000)

Address Function Description
FE3A 0000-3 VMEBErr Timeout Set VMEbus error timeout interval 1

FE3A 0004 Slave window size All installed memory VME-accessible (default) 2

FE3A 0005 " 8 MB slave window for 8 MB board
FE3A 0006 EPROM1

programming
Enable EPROM1 access by CPU-Y, normal operation
(default)

FE3A 0007 " Disable EPROM1 access by CPU-Y for Flash programming
FE3A 0008 Slave address 3 Set Slave address bit A27 to 0 (binary) (default)
FE3A 0009 " Set Slave address bit A27 to 1 (binary)
FE3A 000A " Set Slave address bit A28 to 0 (binary) (default)
FE3A 000B " Set Slave address bit A28 to 1 (binary)
FE3A 000C " Set Slave address bit A29 to 0 (binary) (default)
FE3A 000D " Set Slave address bit A29 to 1 (binary)
FE3A 000E " Set Slave address bit A30 to 0 (binary) (default)
FE3A 000F " Set Slave address bit A30 to 1

Notes: 1 For information on setting the timeout interval, see the System Controller chapter.
 2 To set address bits A22-A26, and A31, see the VME Slave interface chapter.
 3 On boards with 4MB of installed memory.

Section 3: Board Facilities

V452 Series internal registers

3-52 V452 User Guide

The V452 Series control register circuitry decodes only the address lines
of a write access. As a result, the data that is actually written into the
register DOES NOT matter. A write access using any data is all that is
required.

Note For more information, see the VME Slave
interface and VME Master interface
chapters in Section 5 and the CPU
Watchdog chapter in Section 4.

Interrupt control registers

V452 Series boards provide control over interrupt handling by enabling
and/or disabling reception of interrupts by the on-board CPU(s) via the
four 16-bit Interrupt control registers at:

FE39 0000 (Interrupt control register #1)

FE39 4000 (Interrupt control register #2)

FE39 8000 (Interrupt control register #3)

FE39 C000 (Interrupt control register #4)

These registers provide a location to enable or disable reception of in-
terrupts from on-board devices and all seven VMEbus interrupt levels.

Note For directions on how to use this register,
see the Interrupts chapter in this section.

The table below lists the function of all the address locations in the
Interrupt control registers:

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-53

Interrupt control register

Interrupt source Disable (default) Enable

Serial Port A&B to CPU-X (2692) FE39 0000 FE39 0001

Serial Port C&D to CPU-X (2692) FE39 0002 FE39 0003

Timer A to CPU-X (2692) FE39 0004 FE39 0005

Timer C to CPU-X (2692) FE39 0006 FE39 0007

Daughter module A to CPU-X FE39 0008 FE39 0009

Daughter module B to CPU-X FE39 000A FE39 000B

Mailbox to CPU-X FE39 000C FE39 000D

Counter to CPU-X (82C54) FE39 000E FE39 000F

Maskable Level 7 (parity, SysFail, or ACFail) to CPU-X FE39 4000 FE39 4001

VME Level 1 to CPU-X FE39 4002 FE39 4003

VME Level 2 to CPU-X FE39 4004 FE39 4005

VME Level 3 to CPU-X FE39 4006 FE39 4007

VME Level 4 to CPU-X FE39 4008 FE39 4009

VME Level 5 to CPU-X FE39 400A FE39 400B

VME Level 6 to CPU-X FE39 400C FE39 400D

VME Level 7 to CPU-X FE39 400E FE39 400F

Serial Port A&B to CPU-Y (2692) FE39 8000 FE39 8001

Serial Port C&D to CPU-Y (2692) FE39 8002 FE39 8003

Timer A to CPU-Y (2692) FE39 8004 FE39 8005

Timer C to CPU-Y (2692) FE39 8006 FE39 8007

Daughter module A to CPU-Y FE39 8008 FE39 8009

Daughter module B to CPU-Y FE39 800A FE39 800B

Mailbox to CPU-Y FE39 800C FE39 800D

Counter to CPU-Y (82C54) FE39 800E FE39 800F

Maskable Level 7 (parity, SysFail, or ACFail) to CPU-Y FE39 C000 FE39 C001

VME Level 1 to CPU-Y FE39 C002 FE39 C003

VME Level 2 to CPU-Y FE39 C004 FE39 C005

VME Level 3 to CPU-Y FE39 C006 FE39 C007

VME Level 4 to CPU-Y FE39 C008 FE39 C009

VME Level 5 to CPU-Y FE39 C00A FE39 C00B

VME Level 6 to CPU-Y FE39 C00C FE39 C00D

VME Level 7 to CPU-Y FE39 C00E FE39 C00F

Section 3: Board Facilities

V452 Series internal registers

3-54 V452 User Guide

Slave interface control register

The 16-bit Slave Interface control register defines the characteristics of
the VME Slave interface. Normally, the Slave interface is set up as part
of the board’s initialization program that runs at power-up or reset.
However, it is also possible to alter the VME Slave Interface on-the-fly.
The table below lists the locations in the Slave Interface control register
and describes how each is used to configure the VME Slave Interface.

Slave Interface control register (FE38 8000)

Address Function Description

FE38 8000 A32 Select A32 VME extended addressing (default)

FE38 8001 A24 Select A24 addressing.

FE38 8002 Supervisory write ac-
cesses only

Allows write accesses only by Masters whose processors
are operating in 68000 Supervisor mode (if Memory
Protect is OFF) 1 (default)

FE38 8003 No memory protect Allows all VME Masters to perform write accesses (if
Memory protect is OFF) 1

FE38 8004 VME Slave address Set Slave address bit A22 to 0 (default)

FE38 8005 " Set Slave address bit A22 to 1

FE38 8006 " Set Slave address bit A23 to 0 (default)

FE38 8007 " Set Slave address bit A23 to 1

FE38 8008 " Set Slave address bit A24 to 0 (default)

FE38 8009 " Set Slave address bit A24 to 1

FE38 800A " Set Slave address bit A25 to 0 (default)

FE38 800B " Set Slave address bit A25 to 1

FE38 800C " Set Slave address bit A26 to 0 (default)

FE38 800D " Set Slave address bit A26 to 1

FE38 800E " Set Slave address bit A31 to 0 (default) 2

FE38 800F " Set Slave address bit A31 to 1 2

Notes: 1 Memory protect is turned ON/OFF via the Primary Mode register earlier in this chapter.
 2 To set address bits A27 - A30 see the Secondary Control register earlier in this chapter.

Configuration of the Slave interface is accomplished by performing
write accesses to the Slave Interface control register. The circuitry for
this register decodes only the address lines of all write accesses—the
data that is actually written into the register DOES NOT matter.

Note For more information about the V452
Series VME Slave interface and how to
use the Slave Interface control register,
see the VME Slave interface chapter in
Section 5.

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-55

Ethernet/VMEbus control registers

The Ethernet/VMEbus control register sets up the onboard Ethernet
10Base-T interface and the VMEbus request level in absence of JK17
configuration jumpers setting the bus request level. The table below lists
functions and register addresses of the Ethernet/VMEbus control
registers.

Ethernet/VMEbus control registers (FE3A 4000–F)

Function Write to: (default) Write to:

Ethernet Int. to CPU-X FE3A 4000 Disable FE3A 4001 Enable

Ethernet Int. to CPU-Y FE3A 4002 Disable FE3A 4003 Enable

Ethernet Jabber FE3A 4004 Enable FE3A 4005 Disable

Auto Polarity/Enhanced Squelch FE3A 4006 Enh. Squelch FE3A 4007 Auto Polarity

VMEbus Request Level* FE3A 400A |— Level 3 FE3A 400A |— Level 2
FE3A 4008 | FE3A 4009 |

FE3A 400B |— Level 1
FE3A 4008 |

FE3A 4009 |— Level 0
FE3A 400B |

– Reserved – Bits FE3A 400C–F
* Note: Write to the indicated address pair for the bus request level shown.

Board information registers
In accordance with the VME64 extensions specification, the V452 SBC
is provided with readable information registers that help in its
initialization, test, and configuration when plugged into the VME
backplane. The table below lists the register functions and
corresponding address locations. These registers can be read using
either longword or byte read accesses. The register data is described in
the following paragraphs.

Board information registers, address & function

Register Address Function
FE39 0001 Slot ID
FE39 0003 CPU & Board Type
FE39 4003 Memory size and installed options
FE39 8003 Modifications and ECO level
FE39 C003 PCB revision

Section 3: Board Facilities

V452 Series internal registers

3-56 V452 User Guide

Slot ID, FE39 0001

In this byte location, 6 bits are used to indicate the slot ID in which the
board is installed (the 2 higher order bits are unused). The data is in the
following format:

xxP43210

Where:
xx = unused bits
P = odd parity bit
43210 = binary encoded (25–21) slot number (inverted bits)

Odd parity is used to identify when the Slot ID function is missing from
the SBC. A binary value of 11 1111 or 0x3F indicates that the
backplane is the old 3-row style and can’t provide a geographical
address. To deal with the unused higher order bits and extract valid
data, the programmer must AND the register data with 0x3F. For
convenience, the table below lists the slot positions and associated
values (binary and hex) provided by the Slot ID register.

Slot ID register, slot numbers vs. register values

Slot No. Binary Value Hex Value Slot No. Binary Value Hex Value
1 11 1110 3E 12 01 0011 13
2 11 1101 3D 13 11 0010 32
3 01 1100 1C 14 11 0001 31
4 11 1011 3B 15 01 0000 10
5 01 1010 1A 16 10 1111 2F
6 01 1001 19 17 00 1110 0E
7 11 1000 38 18 00 1101 0D
8 11 0111 37 19 10 1100 2C
9 01 0110 16 20 00 1011 0B
10 01 0101 15 21 10 1010 2A
11 11 0100 34 — — —

Section 3: Board Facilities

V452 Series internal registers

V452 User Guide 3-57

CPU & board type, FE39 0003

The byte data in this register forms a two hex digit code in the following
format:

CB

Where:
C = CPU type code

4: 68040
6: 68060

B = Board type code
1: V451
2: V452

Memory size and installed options, FE39 4003

The byte data in this register is made up of one-digit hex code to
indicate memory size and 4 bits to indicate installed options. The data is
in the following format:

Merrf

Where:
M = Memory size code

0: none 5: 64MB C: 2GB
1: 4MB 8: 128MB
2: 8MB 9: 256MB
3: 16MB A: 512MB
4: 32MB B: 1GB

e = Ethernet option bit
1: installed
0: not installed

r = Future option bits (2 ea. undefined, returns ‘0’ value)
f = Flash option bit

1: installed
0: not installed

Section 3: Board Facilities

V452 Series internal registers

3-58 V452 User Guide

Modifications and ECO level, FE39 8003

The byte data in this register forms a two-digit hex code in the following
format:

DE

Where:
D = Modification number code

0-F = 0-15
E = ECO number code

0-F = 0-15

PCB revision, FE39 C003

The byte data in this register forms a two-digit hex code in the following
format:

rR

Where:
r = reserved (always ‘0’)
R = PCB revision code

0-F = rev. A-F

Section 3: Board Facilities

Default & reset conditions

V452 User Guide 3-59

Default & reset conditions

This chapter describes the hardware and programming considerations
for V452 Series default conditions and reset functions.

Default conditions
The table on the following page lists the default conditions present on
several circuitry areas following a local reset of the V452 Series board.

Section 3: Board Facilities

Default & reset conditions

3-60 V452 User Guide

Default conditions

Front panel LEDs
Application LEDs (front panel) On
Fail LED On

On-board interrupts
ABORT switch (Level 7 interrupt) Enabled (non-maskable)
Status for all other Interrupt sources (Levels 7 - 2) Disabled

68040 functions
Internal cache contents Indeterminate
Internal instruction & data caches Disabled
Memory areas not subject to caching (transparent translation) None

On-board DRAM
Content of on-board RAM and RAM parity Indeterminate
Memory parity checking Disabled

CPU Watchdog
CPU Watchdog Halt monitor Disabled
CPU Watchdog Run monitor Disabled

Serial ports B & D Disabled
EPROM1 access by CPU-Y Enabled
VME Slave interface

Slave interface status Disabled
Slave memory write access Disabled
Slave memory write access protection level Supervisor-only
Address width A32
Window size 16 MB
Base Address 0 MB (x0000 0000)
Lower vs. Upper VME A32/D32 address range Lower (Top of DRAM to

0x3FFF FFFF)
VME Master interface

VMEbus release configuration Release on Request (ROR)
VMEbus request configuration Not FAIR requests
Bus request level 3 (with no jumper config.)

VME interrupts
VME Interrupter status Reset
VME interrupt level asserted by the VME interrupter Level 7
VME interrupt vector asserted by the VME interrupter Indeterminate
VME Interrupt handler level None

VME SysRes signal
VME SysRes (reset) reception respond/ignore Respond

VME SysFail signal
VME SysFail interrupt reception (via 2692 DUART) Disabled
VME SysFail\ signal Asserted

2692 control registers
Serial ports B and D Disabled
VME interrupter level Level 7
SysFail reception Off

Section 3: Board Facilities

Default & reset conditions

V452 User Guide 3-61

Reset sources
The following sources can assert the Local Reset line:

Power cycling circuitry — special circuitry asserts a local reset
when the board is power-cycled. A power-up reset lasts at least
250 ms as required by the VMEbus.
Front-panel RESET toggle switch — The V452 Series front panel
RESET toggle switches can reset an individual CPU chip or assert
a board-level local reset as shown below.

A

R
E
S
E
T

A
B
O
R
T

Pushing both switches right ☞ (on all models)
RESETS the CPU(s), all on-board components,
and asserts a VME RESET (if System Controller)

☞

CPU-X Switch (all models)
 Push right ☞ to RESET the CPU
 Push left to assert ABORT

 CPU-Y Switch (dual-CPU only)
 Push right ☞ to RESET the CPU
 Push left to assert ABORT ☞

X

Y

RESET switch operation

VME SysRes\ line — when a remote device asserts the VME
System Reset (SysRes\) it also asserts the Local Reset line.
The V452 Series VMEbus interrupter circuitry can be used to
assert the VMEbus Reset signal to cause a local reset of each
board on the VMEbus.

To assert the VMEbus System Reset sig-
nal for a long enough period to ensure
that all boards on the bus are reset, the
V452 Series board cannot respond to this
signal itself. Thus, before a V452 Series
board can be used to assert the VMEbus
System Reset signal, the board must also
be configured to ignore the VMEbus
System Reset signal itself. For information
about setting up the board to ignore the
VME System Reset signal, see the
VMEbus Slave interface chapter in the
Interface Options section.

Section 3: Board Facilities

Default & reset conditions

3-62 V452 User Guide

CPU Watchdog — can assert a board-level local reset whenever
either one or both of the following two conditions are present:
• If the CPU(s) fails to address the watchdog chip at least once

every 600 ms.
• If the CPU(s) halts.

The V452 Series allows you to program the Watchdog timer to
watch for both conditions or one and not the other if desired.
For more information see the chapter on the CPU Watchdog
chapter in Section 4.
Processor instruction reset — executing a 68040 software RESET
instruction, directs the CPU to assert the Local Reset line.
However, a 68040 RESET instruction only resets external
devices, it does not reset the CPU itself.
Slave Remote Reset — another VMEbus Master can reset a spe-
cific V452 Series board by writing to the board’s Slave reset
registers. The second to last 256 byte region of on-board RAM
acts as a reset register. A Supervisor mode write to byte zero of
this area (Slave Base Address + 3FFEX0 on a 4 MB card) by an-
other VMEbus Master resets the V452 Series board.
The remote slave reset feature can be enabled or disabled via
jumper JK17 as shown in the figure below. A shunt between
JK17 pins 11 and 12 enables Remote Reset, while removing the
shunt disables Remote Reset.

11 12
Remote Reset Enable

No jumper = Disabled

Enabling/disabling Slave Remote reset via JK17

For more information on setting the VME Slave address for use
with the Remote Reset option, see the VME Slave interface
chapter in Section 5.
EZ-bus reset — an installed daughter module can assert a reset
via the V452 Series EZ-bus connector.
For more information see the EZ-bus interface chapter in the
Interface Options section.

Section 3: Board Facilities

Default & reset conditions

V452 User Guide 3-63

Software reset — with software, a reset can be performed in one
of three ways: 1) VME level 0 interrupt, 2) direct watchdog timer
enable, and 3) writing to remote reset register.

Reset sequence
The paragraphs below describe the V452 Series reset sequence:

Power-up reset considerations

Upon power-up, special circuitry, via the Dallas 1232, asserts the
board’s on-board local reset line. The power-up reset lasts for at least
250 ms as required by the CPU and VMEbus. Certain on-board devices
have their hardware reset pins connected directly to the local reset line.
For those devices, the assertion of the local reset line will initialize each
device to a known internal state from which the CPU can easily restart
the system. All on-board devices and control registers are directly
connected to the local reset line.

Default conditions after a local reset

Asserting the local reset line, via one of the methods listed above,
causes a board-level local reset that clears all the control registers in the
CPU and on-the V452 Series board. The table on the next page lists the
default conditions for V452 Series boards after a local reset and before
system initialization by the system boot software/firmware.

Entering boot state after a local reset

After power-cycling or when the local reset line is asserted and then re-
leased by one of the sources listed previously, the board enters a con-
dition called boot state. In boot state, the CPU begins a special type of
exception processing. It internally generates exception vector numbers
0 and 1 and attempts to fetch its initial interrupt stack pointer and
program counter vector from address locations 0x0 and 0x4.

Because this behavior occurs automatically upon reset, the reset
circuitry temporarily alters the board’s address map while in boot state.
In boot state, either the 8-bit wide EPROM or the onboard Flash
appears everywhere in memory as determined by the EPROM boot
enable jumper at JK17 pins 17 and 18 (on = EPROM, off = Flash).

Section 3: Board Facilities

Default & reset conditions

3-64 V452 User Guide

This relocation allows the CPU(s) to fetch reset vectors, the exception
vector table, and its start-up code from the EPROM or onboard Flash as
required.

Start-up vectors

To exit reset state, the CPU must first read the reset vector at 0x0 and
0x4 as described above. The reset vector consists of a long word for the
initial stack pointer (SP) address and a long word for the initial Program
Counter (PC) in that order. The CPU must then fetch code from the
regular EPROM or Flash address space (FE000000 or FC000000
respectively).

If EPROM boot is enabled:

CPU-X executes from EPROM0 at FE000000–FE0FFFFF

CPU-Y (dual-CPU only) executes from EPROM1 at FE400000–
FE4FFFFF (old space) or from Flash module at FD000000–
FDFFFFFF

Except for the first 3 fetches in boot state in which CPU-X fetches from
EPROM0 and CPU-Y (if present) fetches from EPROM1, either CPU can
execute from either or both of the EPROMs.

For a single CPU board, both EPROM sockets can contain code for the
single CPU.

If EPROM boot is disabled, both CPUs execute from onboard Flash at
FC000000–FC7FFFFF.

Section 3: Board Facilities

Default & reset conditions

V452 User Guide 3-65

Reset via software
There are three ways to perform a reset via software:

VME Level 0 interrupt

Watchdog timer enable

Remote reset register

VME Level 0 interrupt reset

By setting the board’s interrupter to produce a Level “0” interrupt, the
board will produce a VME system reset (SysRes) upon generation of the
interrupt. This will reset all boards in the system that are configured to
respond to the VME SysRes signal. For more information on the VME
interrupter, refer to the Configuring the VMEbus interrupter/resetter
discussion in the Interrupts chapter in Section 3.

To set the interrupter to Level 0, execute the following 680x0 assembler
commands:

moveb #0x00, 0xFE28003F /* set desired level bits */
moveb #0x0E, 0xFE28003B /* clear the other bits */

To generate the interrupt, write the following to the Primary Mode
register:

moveb #0x07, 0xFE380003 /* reset interrupter */
moveb #0x0F, 0xFE380003 /* invoke interrupter */

After setting the interrupter to Level “0”, executing these instructions
will cause the board to reset itself and all other boards in the system
that are configured to respond to the SysRes signal.

It is recommended that the board
asserting the VME SysRes be set up to
ignore the VME SysRes signal to ensure a
long enough period for all boards to be
reset. Refer to the discussion below.

Section 3: Board Facilities

Default & reset conditions

3-66 V452 User Guide

Setting up the board to respond to/ignore VME SysRes

V4xx boards can be configured to either respond to or ignore the VME
SysRes signal. This lets you chose the boards that will reset with SysRes.

The VME SysRes respond to/ignore function is set in the Primary
Control register, location 0xFE38C000. Refer to the Control registers
discussion in the V452 internal registers chapter in Section 3 for more
information on control registers.

To configure the board’s behavior to SysRes, write anything to these
register locations:

To respond, write to: 0xFE38C006

To ignore, write to: 0xFE38C007

The assembly code below shows how this is done. The default after a
board reset is for the board to respond to SysRes.

moveb #0x00, 0xFE380006 /* respond to SysRes */
moveb #0x00, 0xFE380007 /* ignore SysRes */

Watchdog timer enable

Software can also reset a board by enabling the board’s watchdog
timer. After a single enable, the watchdog timer times out after
approximately 600 ms to 1.2 sec. The time out causes the board to
reset. This method of reset is generally suited for resetting a specific,
non-system controller board. If the target board is the system controller,
then the entire system is reset.

The watchdog timer function is controlled in the Extended Mode
register, location 0xFE384003. Writing 0x0C to this location enables the
watchdog. Refer to the Mode registers discussion in the V452 internal
registers chapter for more information on mode registers. Refer also to
the CPU Watchdog chapter in the Local Components section for more
information on programming the watchdog timer.

Shown below is the watchdog enable assembler instruction:

moveb #0x0C, 0xFE384003 /* enable watchdog */

Section 3: Board Facilities

Default & reset conditions

V452 User Guide 3-67

Remote reset register

V4xx boards have a remote reset register that resides at the top of
memory just below the mailbox area: xxxFFE00–xxxFFEFF. Writing any
value to this register resets the board. This method of reset is also
generally suited for resetting a specific, non-system controller board. If
the target board is the system controller, then the entire system is reset.
For remote reset to work, a jumper must be installed at JK17 pins 11
and 12. Refer to the Enabling/disabling VME Slave remote reset
discussion in the VME Slave interface chapter in Section 5.

A particular board’s remote reset address is the slave address plus the
remote reset register address as determined by the amount of onboard
RAM:

0x003FFE00 (4 MB)

0x007FFE00 (8 MB)

0x00FFFE00 (16 MB)

0x01FFFE00 (32 MB)

0x03FFFE00 (64 MB)

0x07FFFE00 (128 MB)

0x0FFF FE00 (256 MB, special factory order)

0x1FFF FE00 (512 MB, special factory order)

For example, for a 32MB V4xx board with a slave address of
0x4000000, the remote reset address is 0x05FFFE00 (0x01FFFE00 +
0x04000000).

Shown below is the instruction for writing to our example board’s
remote reset register. In this example, a zero byte is written, but any
value will suffice.

movel #0x00, 0x05FFFE00 /* write zero to remote reset reg */

Section 3: Board Facilities

Default & reset conditions

3-68 V452 User Guide

V452 User Guide 4-1

Local
Components 4

This section describes the primary components and supporting circuitry
responsible for local operations on the V452 Series boards.

68040 CPU

68060 CPU

CPU Mailbox

CPU Watchdog

Dynamic RAM

EPROM

Flash memory module

Onboard Flash memory

Timers & counters

Clock calendar

Non-volatile 8K x 8 SRAM

4-2 V452 User Guide

Section 4: Local Components

68040 CPU

V452 User Guide 4-3

68040 CPU

Introduction
The Motorola® MC68040 is a third generation, 68000-compatible, high-
performance, 32-bit microprocessor. The 68040 is a virtual memory
microprocessor employing multiple, concurrent execution units. The
68040’s highly-integrated architecture includes an 68030-compatible
integer unit, an IEEE 754-compatible floating point unit (FPU), fully
independent instruction and data demand-paged memory management
units (MMU's), and independent 4KB instruction and data caches on a
single chip. The main features of the 68040 include:

20 MIPS integer performance,

3.5 MFLOPS floating-point performance,

IEEE 754-compatible FPU,

Independent instruction and data MMUs,

4KB physical instruction cache and 4KB physical data cache
accessed simultaneously,

32-Bit, non-multiplexed external address and data buses with
synchronous interface,

User-object code compatibility with all other M68000 micropro-
cessors,

Concurrent integer unit, FPU, MMU, bus controller, and bus
snooper maximize throughput,

4 GB direct addressing range.

Section 4: Local Components

68040 CPU

4-4 V452 User Guide

Additional 68040 documentation
This chapter introduces some of the primary features of the 68040 and
describes specific considerations that apply to the use of the 68040 on
V452 Series boards. It is not meant to serve as a complete guide for
programming the 68040.

For detailed information, see the following Motorola publications (the
major topics covered in each manual are listed below the title):

MC68040UM/AD, MC68040 User’s Manual. — describes the
capabilities, operation, and programming of the 68040:

• Programming model
• Data organization and addressing capabilities
• Instructions set
• Signal description
• Memory management
• Instruction and data caches
• Bus operation
• Exception processing
• Instruction execution processing
• Electrical characteristics

MC68040PM/AD, MC68000 Programmer’s Reference Manual —
describes the software instructions used by the processors in the
68000 family:

• Integer instructions
• Floating-point instructions
• Supervisor (privileged) instructions
• CPU32 instruction summary
• Instruction format summary
• Processor instruction summary

Section 4: Local Components

68040 CPU

V452 User Guide 4-5

These publications are available from Motorola at:

Motorola Semiconductor Products Sector
Literature Distribution Center
P.O. Box 20924
Phoenix, Arizona 85036-0924

(800) 521-6274
(520) 994-6561

For information on technical training, contact:

Motorola Semiconductor Products Sector
World Marketing Training Operations EL524
P.O. Box 21007
Phoenix, Arizona 85036-0924

(800) 521-6274 (ask for “Training”)
(520) 897-3665

Section 4: Local Components

68040 CPU

4-6 V452 User Guide

Introduction
The 68040 is an enhanced, 32-bit, HCMOS microprocessor that com-
bines the integer unit processing capabilities of the MC68030 micro-
processor with independent 4KB data and instruction caches and on-
chip FPU.

Instruction

MMU/Cache/

Snoop Controller

(4 KBytes)

Local Bus Controller

Pipelined

Floating Point Unit

Pipelined
Integer Unit

V4xx Local Bus

Data
MMU/Cache/

Snoop Controller

(4 KBytes)

Simplified 68040 block diagram

The 68040 maintains the 32-bit registers available with the entire
M68000 Family as well as the 32-bit address and data paths, a rich
instruction set, and versatile addressing modes. Instruction execution
proceeds in parallel with accesses to the internal caches, MMU opera-
tions, and bus controller activity. Additionally, the integer unit is opti-
mized for high-level language environments.

The 68040 FPU is user-object-code compatible with the MC68882
floating-point coprocessor and conforms to the ANSI/IEEE Standard 754
for Binary Floating-Point Arithmetic. The FPU has been optimized to ex-
ecute the most commonly used subset of the MC68882 instruction set,
and includes additional instruction formats for single-and double-preci-
sion rounding of results. Floating-point instructions in the FPU execute
concurrently with integer instructions in the integer unit.

Section 4: Local Components

68040 CPU

V452 User Guide 4-7

The MMUs support multi-processing, virtual memory systems by trans-
lating logical addresses to physical addresses using translation tables
stored in memory. The MMUs store recently used address mappings in
two, separate, on-chip ATCs. When an ATC contains the physical
address for a bus cycle requested by the processor, a translation table
search is avoided, and the physical address is supplied immediately,
incurring no delay for address translation. Each MMU has two transpar-
ent translation registers available that define a one-to-one mapping for
address space segments ranging in size from 16 MB to 4 GB each.

Each MMU provides read-only and supervisor-only protection on a
page basis. Also, processes can be given isolated address spaces by
assigning each a unique table structure and updating the root pointer
upon a task swap. Isolated address spaces protect the integrity of inde-
pendent processes.

The instruction and data caches operate independently from the rest of
the machine, storing information for fast access by the execution units.
Each cache resides on its own internal address bus and data bus, allow-
ing simultaneous access to both. The data cache provides write-through
or copy-back write modes that can be configured on a page-by-page
basis.

The 68040 bus controller supports a high-speed, non-multiplexed, syn-
chronous external bus interface, which allows the following transfer
sizes: byte, word (2 bytes),long word (4 bytes), and line (16 bytes). Line
accesses are performed using burst transfers for both reads and writes
to provide high data transfer rates.

Section 4: Local Components

68040 CPU

4-8 V452 User Guide

Programming model
The 68040 integrates the functions of the integer unit, MMU, and FPU.
The registers depicted in the programming model provide access and
control for the three units. The registers are partitioned into two levels
of privilege: user and supervisor. User programs, executing in the user
mode, can only use the resources of the user model. System software,
executing in the supervisor mode, has unrestricted access to all proces-
sor resources.

The integer portion of the user programming model, consisting of 16,
general purpose, 32-bit registers and two control registers, is the same
as the user programming model of the MC68030. The 68040 user pro-
gramming model also incorporates the MC68882 programming model
consisting of eight, floating-point, 80-bit data registers, a floating-point
control register, a floating-point status register, and a floating-point
instruction address register.

The supervisor programming model is used exclusively by 68040 sys-
tem programmers to implement operating system functions, I/O con-
trol, and memory management subsystems. This supervisor/user distinc-
tion in the M68000 architecture was carefully planned so that all appli-
cation software can be written to execute in the non-privileged user
mode and migrate to the 68040 from any M68000 platform without
modification. Since system software is usually modified by system
designers when porting to a new design, the control features are prop-
erly placed in the supervisor programming model.

For example, the transparent translation registers of the 68040 can only
be read or written by the supervisor software; programming resources
of user application programs are unaffected by the existence of the
transparent translation registers.

68040 registers

The paragraphs below describe the 68040’s internal registers:

D0-D7 these data registers contain operands for bit and
bit field (1 to 32 bits), byte (8 bit), word (16 bit),
long-word (32 bit), and quad word (64 bit) opera-
tions.

Section 4: Local Components

68040 CPU

V452 User Guide 4-9

A0-A7 Registers A0-A6 and the stack pointer registers
(user, interrupt, and master) are address registers
that may be used as software stack pointers or
base address registers. Register A7 is the user
stack pointer in user mode and is either the inter-
rupt or master stack pointer (A7' or A7") in super-
visor mode. In supervisor mode, the active stack
pointer (interrupt or master) is selected based on
a bit in the status register (SR). The address regis-
ters can be used for word and long-word opera-
tions, and all 16 general-purpose registers (D0-D7,
A0-A7) can be used as index registers.

FP0-FP7 Floating-point data registers — these eight, 80 bit
registers are analogous to the integer data regis-
ters (D0-D7) in all M68000 family processors.
Floating-point data registers always contain
extended-precision numbers. All external
operands, regardless of the data format, are con-
verted to extended-precision values before being
used in any floating-point calculation or stored in
a floating-point data register.

PC Program counter usually contains the address of
the instruction being executed by the 68040.
During instruction execution and exception pro-
cessing, the processor automatically increments
the contents of the PC or places a new value in
the PC, as appropriate.

SR Status register in the supervisor programming
model contains the condition codes that reflect
the results of a previous operation and can be
used for conditional instruction execution of a
program.

CCR Condition Code register — The lower byte of the
SR is accessible in user mode as the condition
code register. Access to the upper byte of the SR
is restricted to the supervisor mode.

Section 4: Local Components

68040 CPU

4-10 V452 User Guide

VBR Vector base register — as part of exception pro-
cessing, the vector number of the exception pro-
vides an index into the exception vector table.
The base address of the exception vector table is
stored in the vector base register. The displace-
ment of an exception vector is added to the value
in the VBR when the 68040 accesses the vector
table during exception processing.

SFC / DFC Source and destination function code registers —
contain 3-bit function codes. Function codes can
be considered extensions of the 32-bit linear
address. Function codes are automatically gener-
ated by the processor to select address spaces for
data and program accesses at the user and super-
visor modes. The alternate function code registers
are used by certain instructions to explicitly
specify the function codes for various operations.

CACR Cache control register — controls enabling of the
on-chip instruction and data caches of the 68040.

SRP / URP Supervisor and user root pointer registers —
point to the root of the address translation table
tree to be used for supervisor and/or user
accesses. The URP is used if FC2 of the logical
address is zero, and the SRP is used if FC2 is one.

TC Translation control register — enables logical-to-
physical address translation and selects either 4K
or 8K page sizes. As shown in Figure 2, there are
four transparent translation registers--ITT0 and
ITT1 for instruction accesses and DTT0 and DTT1
for data accesses. These registers allow portions
of the logical address space to be transparently
mapped and accessed without the use of resident
descriptors in an ATC.

MMUSR MMU status register — contains status informa-
tion from the execution of a PTEST instruction.
The PTEST instruction searches the translation
tables for the logical address as specified by this
instruction's effective address field and the DFC.

Section 4: Local Components

68040 CPU

V452 User Guide 4-11

FPCR Floating -point control register — this 32-bit regis-
ter contains an exception enable byte that
enables/disables traps for each class of floating-
point exceptions and a mode byte that sets the
user-selectable modes. The FPCR can be read or
written to by the user and is cleared by a hard-
ware reset or a restore operation of the null state.
When cleared, the FPCR provides the IEEE 754
standard defaults.

FPSR Floating-point status register — contains a condi-
tion code byte, quotient bits, an exception status
byte, and an accrued exception byte. All bits in
the FPSR can be read or written by the user.
Execution of most floating-point instructions
modifies this register.

FPIAR Floating-point instruction address register — for
the subset of the FPU instructions that generate
exception traps, this 32-bit register is loaded with
the logical address of an instruction before it is
executed. This address can then be used by a
floating-point exception handler to locate a float-
ing-point instruction that has caused an exception.
The move floating-point data register (FMOVE)
instruction (to/from the FPCR,FPSR, or FPIAR) and
the move multiple data registers (FMOVEM)
instruction cannot generate floating-point excep-
tions; therefore, these instructions do not modify
the FPIAR. Thus, the FMOVE and FMOVEM
instructions can be used to read the FPIAR in the
trap handler without changing the previous value.

Section 4: Local Components

68040 CPU

4-12 V452 User Guide

Data types
The 68040 supports the basic data types listed in the table below. Some
data types apply only to the integer unit, some only to the FPU, and
some to both the integer unit and the FPU. In addition, the instruction
set supports operations on other data types such as memory addresses.

68040 data types

Operand data type Size Support Notes
Bit 1 Bit IU —
Bit Field 1-32 Bits IU Field of Consecutive Bit
BCD 8 Bits IU Packed: 2 Digits/Byte - Unpacked: 1 Digit/Byte
Byte Integer 8 Bits IU,FPU —
Word Integer 16 Bits IU,FPU —
Long-Word Integer 32 Bits IU,FPU —
Quad-Word Integer 64 Bits IU Any Two Data Registers
16-Byte 128 Bits IU Memory-Only,Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8 Bit Exponent, 23-Bit Mantissa
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11 Bit Exponent, 52-Bit Mantissa
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

The three integer data formats common to both the integer unit and the
FPU (byte, word, and long word) are the standard twos-complement
data formats defined in the M68000 Family architecture. Whenever an
integer is used in a floating-point operation, the integer is automatically
converted by the FPU to an extended-precision floating-point number
before being used. The ability to effectively use integers in floating-point
operations saves user memory because an integer representation of a
number usually requires fewer bits than the equivalent floating-point
representation.

Single-and double-precision floating-point data formats are implemented
in the FPU as defined by the IEEE 754 standard. These data formats are
the main floating-point formats and should be used for most calcula-
tions involving real numbers.

The extended-precision data format is also in conformance with the IEEE
754 standard, but the standard does not specify this format to the bit
level as it does for a single and double precision. The memory format
for the FPU consists of 96 bits (three long words). Only 80 bits are
actually used; the other 16 bits are reserved for future use and for long-
word alignment of the floating-point data structures in memory. The
extended-precision format has a 15-bit exponent, a 64-bit mantissa, and
a 1-bit mantissa sign. Extended-precision numbers are intended for use
as temporary variables, intermediate values, or where extra precision is
needed.

Section 4: Local Components

68040 CPU

V452 User Guide 4-13

Address modes
The 68040 addressing modes are listed in the table below. The register
indirect addressing modes support post-increment, pre-decrement, off-
set, and indexing, which are particularly useful for handling data struc-
tures common to sophisticated applications and high-level languages.

Addressing modes

Modes Syntax
Register Direct

Data Register Direct
Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Post-increment
Address Register Indirect with Pre-decrement
Address Register Indirect with Displacement

(An)
(An)+
-(An)
(d16,An)

Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement)
Address Register Indirect with Index (Base Displacement)

(dg,An,Xn)
(bd,An,Xn)

Memory Indirect
Memory Indirect Post-indexed
Memory Indirect Pre-indexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d16,PC)
Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement)
PC Indirect with Index (Base Displacement)

(dg.PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Post-indexed
PC Memory Indirect Pre-indexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

xxx.W
xxx.L

Immediate #<data>
Notes:
Dn= Data Register,D7-D0
An= Address Register, A7-A0
dg,d16= A twos-complement or sign extended displacement; added as part of the effective

address calculation; size is 8 (dg) or 16 (d16) bits; when omitted, assemblers use a value
of zero.

Xn= Address or data register used as an index register; form is Xn.SIZE/SCALE, where SIZE
is .W or .L (indicates index register size) and SCALE is 1, 2, 4, or 8 (index register is mul-
tiplied by SCALE); use of SIZE and/or SCALE is optional.

bd= A twos complement base displacement; when present, size can be 16 or 32 bits.
od= Outer displacement, added as part of effective address calculation after any memory indi-

rection; use is optional with size of 16 or 32 bits.
PC= Program Counter
<data>= Immediate value of 8, 16, or 32 bits.
()= Effective Address
[]= Used as indirect access to long-word address.

Section 4: Local Components

68040 CPU

4-14 V452 User Guide

The program counter indirect mode also has indexing and offset capa-
bilities; this addressing mode is typically required to support position-
independent software. In addition to these addressing modes, the
68040 provides index sizing and scaling features that enhance software
performance. Data formats are supported orthogonally by all arithmetic
operations and by all appropriate addressing modes.

Instruction set overview
The instructions provided by the 68040 are listed in Table 3. The
instruction set has been tailored to support high-level languages and is
optimized for those instructions most commonly executed (however, all
instructions listed are fully supported). Many instructions operate on
bytes, words, and long-words, and most instructions can use any of the
addressing modes of Table 2.

The 68040 floating-point instructions, a commonly used subset of the
68882 instruction set, are implemented in hardware. The remaining
unimplemented instructions are less frequently used and are efficiently
emulated in software, maintaining compatibility with the 68881/68882
floating-point coprocessors.

The 68040 instruction set includes MOVE16, a new user instruction
that allows high-speed transfers of 16-byte blocks between external
devices, such as memory to memory or coprocessor to memory.

For detailed information on the 68040 instruction set, refer to M68000
PM/AD, M6800 Programmer's Reference Manual.

Section 4: Local Components

68040 CPU

V452 User Guide 4-15

68040 instruction set

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend *FSQRT Floating-Point Square Root
ADD Add *FSUB Floating-Point Subtract
ADDA Add Address FTRAPcc Floating-Point Trap-On Condition
ADDI Add Immediate FTST Floating-Point Test
ADDQ Add Quick ILLEGAL Take Illegal Instruction Trap
ADDX Add with Extend JMP Jump
AND Logical AND JSR Jump to Subroutine
ANDI Logical AND Immediate LEA Load Effective Address
ASL, ASR Arithmetic Shift Left and Right LINK Link and Allocate
Bcc Branch Conditionally LSL,LSR Logical Shift Left and Right
BCHG Test Bit and Change MOVE Move
BCLR Test Bit and Clear *MOVE16 16-Byte Block Move
BFCHG Test Bit Field and Change MOVEA Move Address
BFCLR Test Bit Field and Clear MOVE CCR Move Condition Code Register
BFEXTS Signed Bit Field Extract MOVE SR Move Status Register
BFEXTU Unsigned Bit Field Extract MOVE USP Move User Stack Pointer
BFFFO Bit Field Find First One *MOVEC Move Control Register
BFINS Bit Field Insert MOVEM Move Multiple Registers
BFSET Test Bit Field and Set MOVEP Move Peripheral
BFTST Test Bit Field MOVEQ Move Quick
BKPT Breakpoint *MOVES Move Alternate Address Space
BRA Branch MULS Signed Multiply
BSET Test Bit and Set MULU Unsigned Multiply
BSR Branch to Subroutine NBCD Negate Decimal with Extend
BTST Test Bit NEG Negate
CAS Compare and Swap Operands NEGX Negate with Extend
CAS2 Compare and Swap Dual Operands NOP No Operation
CHK Check Register Against Bounds NOT Logical Complement
CHK2 Check Register Against Upper and Lower Bounds OR Logical Inclusive OR
*CINV Invalidate Cache Entries ORI Logical Inclusive OR Immediate
CLR Clear PACK Pack BCD
CMP Compare *PEA Push Effective Address
CMPA Compare Address *PFLUSH Flush Entry(ies) in the ATCs
CMPI Compare Immediate *PTEST Test a Logical Address
CMPM Compare Memory to Memory RESET Reset External Devices
CMP2 Compare Register Against Upper and Lower Bounds ROL,ROR Rotate Left and Right
*CPUSH Push then Invalidate Cache Entries ROXL,RORX Rotate with Extend Left and Right
DBcc Test Condition, Decrement and Branch RTD Return and Deallocate
DIVS,DIVSL Signed Divide RTE Return from Exception
DIVU, DIVUL Unsigned Divide RTR Return and Restore Codes
EOR Logical Exclusive OR RTS Return from Subroutine
EORI Logical Exclusive OR Immediate SBCD Subtract Decimal with Extend
EXG Exchange Registers Scc Set Conditionally
EXT, EXTB Sign Extend STOP Stop
*FABS Floating-Point Absolute Value SUB Subtract
*FADD Floating-Point Add SUBA Subtract Address
FBcc Floating-Point Branch SUBI Subtract Immediate
FCMP Floating-Point Compare SUBQ Subtract Quick
FDBcc Floating-Point Decrement and Branch SUBX Subtract with Extend
*FDIV Floating-Point Divide SWAP Swap Register Words
*FMOVE Move Floating-Point Register TAS Test Operand and Set
FMOVEM Move Multiple Floating-Point Registers TRAP Trap
*FMUL Floating-Point Multiply TRAPcc Trap Conditionally
*FNEG Floating-Point Negative TRAPV Trap on Overflow
FRESTORE Restore Floating-Point Internal State TST Test Operand
FSAVE Save Floating-Point Internal State UNLK Unlink
FScc Floating-Point Set According to Condition UNPK Unpack BCD

Note: * New 68040-only instructions.

Section 4: Local Components

68040 CPU

4-16 V452 User Guide

Exception processing
The 68040 provides the same extensions to the exception stacking pro-
cess as the MC68030. If the M bit in the SR is set, the master stack
pointer is used for all task-related exceptions. When a nontask-related
exception occurs (i.e., an interrupt), the M bit is cleared, and the inter-
rupt stack pointer is used. This feature allows a task's area to be carried
within a single processor control block, and new tasks can be initiated
by simply reloading the master stack pointer and setting the M bit.

The externally generated exceptions are interrupts, bus errors, and reset
conditions. The interrupts are requests from external devices for proces-
sor action; whereas, the bus error and reset signals are used for access
control and processor initialization. The internally generated exceptions
come from instructions, address errors, tracing, or break points.

The TRAP, TRAPcc, TRAPVcc, FTRAPcc, CHK, CHK2, and DIV
instructions can all generate exceptions as part of their instruction
execution. Tracing behaves like a very high-priority, internally-generated
interrupt whenever it is processed. The other internally-generated
exceptions are caused by unimplemented floating-point instructions,
illegal instructions, instruction fetches from odd addresses, and privilege
violations and for invalid descriptors encountered during table searches.

Exception processing for the 68040 occurs in the following sequence:

➊ an internal copy is made of the SR,
➋ the vector number of the exception is determined,
➌ current processor status is saved, and
➍ the exception vector offset is determined by multiplying the

vector number by four. This offset is then added to the contents
of the VBR to determine the memory address of the exception
vector. The instruction at the address given in the exception
vector is fetched, and normal instruction decoding and
execution is started.

Section 4: Local Components

68040 CPU

V452 User Guide 4-17

Exception vector assignments (V452 Series boards and the 68040)

Vector
number

(dec)

Vector
number

(hex)

Vector
address

(hex)

Offset
space

Assignment Status

0 00 000 SP Reset Initial Interrupt Stack Pointer ---
1 01 004 SP Reset Initial Program Counter ---
2 02 008 SD Bus Error Yes
3 03 00C SD Address Error Yes
4 04 010 SD Illegal Instruction No
5 05 014 SD Integer divide by zero No
6 06 018 SD CHK, CHK2 Instruction No
7 07 01C SD cpTRAPcc, TRAPcc, TRAPV Instructions No
8 08 020 SD Privilege Violation No
9 09 024 SD Trace Yes

10 0A 028 SD Line1010 Emulator No
11 0B 02C SD Line 1111 Emulator No
12 0C 030 SD — Unassigned, reserved —
13 0D 034 SD — Unassigned, reserved — *** No
14 0E 038 SD Format Error No
15 0F 03C SD Uninitialized Interrupt Yes

16 - 23 10-17 40 - 5C SD Unassigned, (EZ-bus modules) **
24 18 060 SD Spurious Interrupt Yes
25 19 064 SD On-board Level 1 Interrupt ** Yes
26 1A 068 SD On-board Level 2 Interrupt ** (counters; 82C54) Yes
27 1B 06C SD On-board Level 3 Interrupt ** (CPU Mailboxes) Yes
28 1C 070 SD On-board Level 4 Interrupt ** (EZ-bus modules) Yes
29 1D 074 SD On-board Level 5 Interrupt ** (Async. serial interface; 2692 UART) Yes
30 1E 078 SD On-board Level 6 Interrupt ** (timers; 2692 UART) Yes
31 1F 07C SD On-board Level 7 Interrupt ** (ABORT, Bad parity, ACFail, SysFail) Yes

32 - 47 20-2F 80 - BC SD TRAP #0-15 Instruction Vectors No
48 30 0C0 SD FP Branch or Set on Unordered Condition
49 31 0C4 SD FP Inexact Result No
50 32 0C8 SD FP Divide by Zero No
51 33 0CC SD FP Underflow No
52 34 0D0 SD FP Operand Error No
53 35 0D4 SD FP Overflow No
54 36 0D8 SD FP Signaling NAN No
55 37 0DC SD — FP Unimplemented data type — * No
56 38 0E0 SD — Unassigned, reserved — *** No

57 - 63 39 - 3D E4 - F6 SD — Unassigned, reserved —
64 - 255 40-FF 100-3FC SD User-defined Vectors (192) (EZ-bus modules)

Notes: SP = Supervisor Program Space;
SD = Supervisor Data Space

* Assignment is different than that used on the 68030.
** Assignment is particular to the V452 Series boards.

*** Exception is assigned for 68020 and 68030 processors, but not the 68040.
On-board interrupts appear in bold face.
The user-defined vectors (64 to 255) may be assigned to the EZ-bus (for daughter modules) if desired.

Section 4: Local Components

68040 CPU

4-18 V452 User Guide

Instruction and data caches
Studies have shown that typical programs spend much of their execu-
tion time in a few main routines or tight loops. Earlier members of the
68000 Family took advantage of this locality-of-reference phenomenon
to varying degrees. The 68040 takes further advantage of cache
technology with its two, independent, on-chip, physical address space
caches, one for instructions and one for data. The caches reduce the
processor's external bus activity and increase central processor unit
(CPU) throughput by lowering the effective memory access time. For a
typical system design, the large caches of the 68040 yield a very high
hit rate, providing a substantial increase in system performance.
Additionally, the caches are automatically burst-filled from the external
bus whenever a cache miss occurs.

The autonomous nature of the caches allows instruction stream fetches,
data stream fetches, and a third external access to occur simultaneously
with instruction execution. For example, if the 68040 requires both an
instruction stream access and an external peripheral access and if the
instruction is resident in the on-chip cache, the peripheral access pro-
ceeds unimpeded rather than being queued behind the instruction
fetch. If a data operand is also required and is resident in the data
cache, it can also be accessed without hindering either the instruction
access or the external peripheral access. The parallelism inherent in the
68040 also allows multiple instructions that do not require any external
accesses to execute concurrently while the processor is performing an
external access for a previous instruction.

Cache organization

The four-way set-associative instruction and data caches have 64 sets of
four 16-byte lines for a total cache storage of 4K bytes each. Each 16-
byte line contains an address tag and state information. State informa-
tion for each entry consists of a valid flag for the entire line in both
instruction and data caches and write status for each long word in the
data cache. The write status in the data cache signifies whether or not
the long-word data is dirty (meaning that the data in the cache has been
modified but has not been written back to external memory) for data
copy-back pages.

The caches are accessed by physical addresses from the on-chip
MMUs. The translation of the upper bits of the logical address occurs
concurrently with the accesses into the set array in the cache by the
lower address bits. The output of the ATC is compared with the tag field
in the cache to determine if one of the lines in the selected set matches

Section 4: Local Components

68040 CPU

V452 User Guide 4-19

the translated physical address. If the tag matches and the entry is valid,
then the cache has a hit.

If the cache hits and the access is a read, the appropriate long word
from the cache line is multiplexed onto the appropriate internal bus. If
the cache hits and the access is a write, the data, regardless of size, is
written to the appropriate portion of the corresponding long-word entry
in the cache.

When a data cache miss occurs and a previously valid cache line is
needed to cache the new line, any dirty data in the old line will be
internally buffered and copied back to memory after the new cache line
has been loaded. Pushing of dirty data can be forced by the CPUSH
instruction.

Cachability of data in each memory page is controlled by two bits in the
page descriptor for each page. Cachable pages may be either write-
through or copy-back, with no write-allocate for misses to write-through
pages. Noncachable pages may also be specified as noncachable I/O,
forcing accesses to these pages to occur in order of instruction execu-
tion.

Cache coherency

Although the large size of the 68040’s internal caches significantly
increase their ability to boost performance, it also increases the chance
that the contents of cache may be different from what is in memory
whenever the CPU is operating on memory locations that may also be
written to or manipulated by another processor, DMA controller, or
VME Master.

To deal with these potential cache-to-memory coherency problems, the
68040 provides several different ways to structure and control how
data and instructions are cached:

Transparent translation register — this 68040 register identifies
memory areas in 16MB intervals that will not be cached at all.
Although this option completely eliminates all possibility of
cache-to-memory incoherency, it also seriously degrades the
68040’s potential performance.

Write-through versus copy-back cached memory — these cache
modes effect how memory is updated in response to updates to
the cache. In a write-though cache, the 68040 automatically
writes through all updates to the cache to memory as well. In a
copy-back cache the 68040 does not necessarily copy back

Section 4: Local Components

68040 CPU

4-20 V452 User Guide

cache updates to memory until later or until forced by the cpush
instruction described in the next paragraph.

cinv & cpush instructions — these new 68040 instructions
invalidate either a line, page, or all of the cache that has the
effect of forcing the 68040 to perform subsequent memory
accesses out of actual memory rather than a cache. However,
unlike cinv command which only invalidates the cache, cpush
forces any changed or dirty data to be written back to memory
before invalidating the specified line, page, or the entire contents
of the cache.

Bus snooping — the 68040 has the ability to snoop the external
bus during accesses by other bus masters to maintain coherency
between the 68040 caches and external memory systems.
External write cycles are snooped by both the instruction cache
and data cache; whereas, external read cycles are snooped only
by the data cache. In addition, external cycles can be flagged on
the bus as snoopable or nonsnoopable. When an external cycle
is marked as snoopable, the bus snooper checks the caches for a
coherency conflict based on the state of the corresponding
cache line and the type of external cycle.
Although the internal execution units and the bus snooper circuit
all have access to the on-chip caches, the snooper has priority
over the execution units to allow the snooper to immediately
resolve coherency discrepancies.
Despite its sophisticated features bus snooping may be the least
desirable method for ensuring cache coherency for the following
two reasons:

• In its present implementation, the 68040 bus snooping
cannot reliably monitor BLT64 transfers for potential
cache coherency problems.

• Bus snooping is a very slow process when applied to
large non-BLT data transfers that seriously erodes any
performance increase to be gained by caching at all. As
a general rule, snooping should only be used as a cache
coherency tool in cases where only small non-BLT data
transfers are likely to be encountered. For large non-BLT
data transfers, it is far more efficient to use one or a
combination of the other cache coherency tools listed
above.

For more information about using these cache management tools and
techniques, see the MC68040 User Guide and the MC68000 Family
Programmer’s Reference Manual from Motorola.

Section 4: Local Components

68040 CPU

V452 User Guide 4-21

Setting up the 68040 caches

The paragraphs below describe how to set up the 68040’s data and
instruction caches after a power-up or reset.

Invalidating cache contents — After a power cycle or reset, any instruc-
tions or data remaining in the 68040’s internal caches are not reliable
and need to be invalidated early in the initialization sequence. This can
be accomplished by issuing the following 68040 assembler commands:

cinva
nop

If you do not have assembler that specifically supports the 68040, the
following “hand-assembled” command can also be used:

.short 0xF4DB
nop

Note The nop instruction is recommended by
Motorola to resynchronize the 68040’s
internal pipelines.

Using the Transparent Translation register — Certain types of data are
not compatible with the 68040’s new caching and processing tech-
niques. The Transparent Translation register in the 68040 identifies
areas in memory to be "translated" directly or given special handling by
the 68040’s MMU. More detailed information about this register ap-
pears later in this chapter.

The address space assigned to I/O functions is a particularly important
area for such special treatment for the following two reasons:

I/O areas are not compatible with data caching because the data
they contain can be changed by an external source without the
knowledge of the 68040's cache circuitry.

Normally, I/O activity must be processed in a strict sequence of
steps. However, unless otherwise instructed by the MMU, the
68040 may change the order of read and write instructions to
optimize its own operations without regard for the needs of
external devices.

As a result, the data (dtt0) in I/O regions (above 0xFE00 0000 on V452
Series boards) must be identified for “serialized” processing and must
be inhibited from data caching using the following set of 68040 assem-
bler commands:

Section 4: Local Components

68040 CPU

4-22 V452 User Guide

movel #0xFE01C040, d0
movec d0, dtt0

The hexadecimal expression in the movel instruction given above
directs the 68040 to perform the following individual actions:

➊ The FE byte designates the 16 MB area from 0xFE00 0000 to
0xFEFF FFFF as the base area for transparent translation.

➋ The 01 byte designates an additional 16 MB area above the
base area (0xFF00 0000 to 0xFFFF FFFF) for transparent
translation.

➌ The C0 byte enables the transparent translation register to con-
tain the memory range expressed in the previous two bytes. It
also enables transparent translation for both the user and super-
visory modes.

➍ The 40 byte directs the 68040 to inhibit caching, and to serialize
the designated memory region.

In lieu of a 68040-compatible assembler, the following sequence can be
used which includes a hand-assembled command for the movec com-
mand listed above:

movel #0xFE01C040, d0
.long 0x4E7B0006

Enabling and disabling the 68040 caches — With setup complete, the
instruction and data caches can be enabled using the following 68030-
compatible assembler command:

movel #0x80008000, d0 |Write to intermediary scratch register
movec d0 cacr |Enable data & instruction caches

To disable the instruction and data caches execute the following as-
sembler command:

movel #0x00000000, d0 |Write to intermediary scratch register
movel d0 cacr |Disable data & instruction caches

Note Only bits 31 and 15 are meaningful in
the cacr register. Bit 31 (0xxx xxxx) turns
on and off the 68040’s data cache. Bit 15
(xxxx 0xxx) turns on and off the 68040’s
instruction cache.

Section 4: Local Components

68040 CPU

V452 User Guide 4-23

Operand transfer types
The 68040 external synchronous bus supports multiple masters and
overlaps arbitration with data transfers. The bus is optimized to perform
high-speed transfers to and from an external cache or memory. The
data and address buses are each 32 bits wide.

The 68040 provides two signals (TT1,TT0) that define four types of bus
transfers: normal access, MOVE16 access, alternate access, and inter-
rupt acknowledge access. Normal accesses identify normal memory
references; MOVE16 accesses are memory accesses by a MOVE16
instruction; and alternate accesses identify accesses to the undefined
address spaces (function code values of 0,3,4,7). The interrupt
acknowledge access is used to fetch an interrupt vector during interrupt
exception processing.

Section 4: Local Components

68040 CPU

4-24 V452 User Guide

Bus snooping
Bus snooping is a mechanism the 68040 provides to ensure cache
coherency, that is, to ensure that data in main memory is consistent
with the corresponding data in the 68040’s on-chip caches.

Cache coherency is an important consideration while using the 68040
in a mult-ported local memory environment. This is because local
memory may be updated by DMA devices, other VMEbus masters, or
another 68040 chip causing the data in the 68040's cache from that
same area to be invalid or stale.

Cache coherency can also be a problem while the 68040 is operating
in a high-performance mode called copyback mode. In copyback mode
the 68040 can update its own cache without updating local memory as
well. A subsequent read of local memory by a DMA engine or other
Master in this case would also return stale data.

Bus snooping is a means by which the 68040 processor(s) maintain
cache coherency between their internal cache and system memory by
monitoring or "snooping" external reads or writes to local memory from
another CPU Master on the VMEbus or EZ-bus

Note At present, the 68040’s bus snooping
feature cannot monitor BLT32 or BLT64
transfers for potential cache-to-memory
coherency problems. For more informa-
tion about other methods to ensure
cache coherency, see the section on
Cache coherency that appears earlier in
this chapter.

V452 Series boards have several potential masters that transfer data:

the two 68040 processors

the VMEbus

the EZ-bus

Each master may either write data into or read data out of local DRAM
memory. The 68040s also contain caches that may hold copies of lines
of main memory data; they may be coherent with memory or may
contain dirty data (modified data not yet written to main memory).

The task of the snooping logic is to ensure that the 68040’s cache is
informed of any data writes into main memory by any device, and that

Section 4: Local Components

68040 CPU

V452 User Guide 4-25

any reads of main memory are given the most recent data (the data in a
68040’s cache, if it’s more recent than the main memory’s copy).

If an external bus Master performs a read transfer on the bus while
snooping is enabled (via the primary mode register) and if the snoop
logic within a 68040 chip determines that the on-chip data cache has
dirty data (i.e., data valid but not consistent with memory) that is
requested for the transfer, memory is prevented from responding to the
read request, and the 68040 supplies the data from its cache directly to
the Master. If an external bus Master performs a write transfer on the
bus while snooping is enabled and if the 68040's snoop logic
determines that one of the on-chip caches has a valid line for this
request, the 68040 will invalidate the affected cache line.

When there are two 68040’s on the
board snooped write accesses will prop-
erly invalidate both CPU’s cache entries if
necessary. However, if both CPUs re-
spond to a snooped read access, data
contention can occur. The programmer
must take appropriate measures to avoid
this situation.

Write snooping

The mechanism used for snooped writes is that of invalidating the
cache line containing stale (no longer valid) data. The snooping
controller inside the 68040, when directed by the Snoop Control bits
(see below), holds off the memory response while it searches its caches
for an entry corresponding to the address of the memory write. If such
an entry exists, then it is marked invalid, and the memory write is then
allowed to proceed. This has the effect of requiring the processor to
read the valid data from memory the next time it needs it, thus ensuring
that the processor gets the most up-to-date data.

Read snooping

The snooping of read cycles is done by allowing the 68040 to provide
dirty data to the master. The snooping controller inside the 68040,
when directed by the Snoop Control bits (see below), holds off the
memory response while it searches its caches for an entry
corresponding to the address of the memory read. If such an entry
exists, then it is checked to see if it contains dirty data or not.

If the data is not dirty, meaning that the main memory agrees with the
cache, the memory read is allowed to proceed. If the cache contains

Section 4: Local Components

68040 CPU

4-26 V452 User Guide

dirty data, however, then the 68040 provides the data to the master
while keeping memory inhibited. This has the effect of ignoring the
(wrong) contents of memory, while giving the master the most up-to-
date data. Subsequent reads from this location will continue to be
snooped in this manner until the processor writes the updated data to
memory.

Snoop control bits

Snoop cycle control is provided for each of the possible snooped local
bus owners. These control bits are listed below.

68040 Each 68040 has two output lines called User-
Programmable Attribute bits. These are
connected to the Snoop Control bits of both
processors so that whichever processor is the
master will drive the other processor's Snoop
control bits.

The UPA bits are controlled in the MMU. Refer to
the 68040 Programmer's Manual for further
information regarding the setup and use of these
bits.

VMEbus A mode bit called VSnupEn controls VMEbus
slave cycle snooping. This bit, when clear, will
prevent VMEbus slave cycles from being snooped
When set, this bit allows VMEbus slave write
cycles to be snooped with the SC bits set to 10,
causing cache invalidation of stale data. All
VMEbus read cycles, when VSnupEn is set, will
be snooped with the SC bits set to 01, causing
the slave processor to provide the dirty data in its
cache.

EZ-bus The EZ-bus snooping is similar to the VMEbus
snooping. The control bit DSnupEn, when set,
allows EZ-bus DMA cycle snooping according to
the same rules as for VMEbus snooping.

An additional snooping control for the EZ-bus
exists in the DSnRq\ signal. An EZ-bus module
that drives this line active will request snooping
for this cycle IN ADDITION TO any snooping
allowed by the DSnupEn bit. In other words, EZ-
bus snooping will occur if either DSnupEn is set
or if DSnRq\ is driven by the EZ-bus module.

Section 4: Local Components

68040 CPU

V452 User Guide 4-27

Snooping between 68040s

Any snoopable memory shared by the two 68040s must be cached in
writethrough mode. This must be done because copyback mode
doesn't cause a memory cycle when the cache is updated. If processor
A and processor B have the same line of data in their caches and
processor A updates its cache line in copyback mode, processor B will
not know that its corresponding cache entry has become stale.

Memory management unit
The full addressing range of the 68040 is 4 GB (4,294,967,296 bytes);
however, most 68040 systems implement a much smaller physical
memory. Nonetheless, by using virtual memory techniques, the system
can be made to appear to have a full 4 GB of physical memory avail-
able to each user program. The independent instruction and data
MMUs fully support demand-paged virtual-memory operating systems
with either 4K and 8K page sizes. In addition to its main function of
memory management, each MMU protects supervisor areas from
accesses by user programs and also provides write protection on a
page-by-page basis. For maximum efficiency, each MMU operates in
parallel with other processor activities.

Translation mechanism

Because logical-to-physical address translation is one of the most fre-
quently executed operations of the 68040 MMUs, this task has been
optimized. Each MMU initiates address translation by searching for a
descriptor containing the address translation information in the ATC. If
the descriptor does not reside in the ATC, then the MMU performs ex-
ternal bus cycles via the bus controller to search the translation tables in
physical memory. After being located, the page descriptor is loaded into
the ATC, and the address is correctly translated for the access provided
no exception conditions are encountered.

Address translation cache

An integral part of the translation function previously described is the
dual cache memory that stores recently used logical-to-physical address
translation information (page descriptors) for instruction and data
accesses. These caches are 64-entry, four way, set-associative. Each ATC
compares the logical address of the incoming access against its entries.
If one of the entries matches, there is a hit, and the ATC sends the phys-
ical address to the bus controller, which then starts the external bus

Section 4: Local Components

68040 CPU

4-28 V452 User Guide

cycle (provided no hit occurred in the corresponding cache for the
access).

Translation tables

The translation tables of the 68040 have a three-level tree structure and
reside in main memory. Since only a portion of the complete tree needs
to exist at any one time, the tree structure minimizes the amount of
memory necessary to set up the tables for most programs. As shown in
Figure 4, either the user root pointer or the supervisor root pointer
points to the first-level table, depending on the value of the function
code for an access. Table entries at the second level of the tree (pointer
tables) contain pointers to the third level (page tables). Entries in the
page tables contain either page descriptors or indirect pointers to page
descriptors. The mechanism for performing table search operations uses
portions of the logical address (as indices) at each level of the search.
All addresses in the translation table entries are physical addresses.

There are two variations of table searches for both 4K and 8K page
sizes: normal searches and indirect searches. An indirect search differs
in that the entry in the third-level page table contains a pointer to a
page descriptor rather than the page descriptor itself.

Entries in the translation tables contain control and status information in
addition to the physical address information. Control bits specify write
protection, limit accesses to supervisor only, and determine cachability
of data in each memory page. Each page descriptor also has two user-
programmable bits that appear on the UPA0 and UPA1 signals during
an external access for use as address modifier bits.

A global bit can be set in each page descriptor to prevent flushing of
the ATC entry for that page by some PFLUSH instructions variants,
allowing system ATC entries to remain resident during task swaps. If
these special PFLUSH instructions are not used, this bit can be user
defined. The MMUs automatically maintain access-history information
for the pages by updating the used (U) and modified (M) status bits.

MMU instructions

The MMU instructions supported by the 68040 are as follows:

PFLUSH Allows flushing of either selected ATC entries by
function code and logical address or the entire
ATCs.

Section 4: Local Components

68040 CPU

V452 User Guide 4-29

PTEST Takes an address and function code and searches
the translation tables for the corresponding entry,
which is then loaded into the ATC. The results of
the search are available in the MMU SR and are
often useful in determining the cause of a fault.

All 68040 MMU instructions are privileged and can only be executed
from the supervisor mode.

Transparent translation

Four transparent translation registers, two each for instruction and data
accesses, are provided on the 68040 MMU to allow portions of the
logical address space to be transparently mapped and accessed without
the need for corresponding entries resident in the ATC. Each register is
used to define a range of logical addresses from 16 MB to 4 GB with a
base address and a mask. All addresses within these ranges are not
mapped and are not optionally protected against user or supervisor
accesses and write accesses. Logical addresses in these areas become
the physical addresses for memory access. The transparent translation
feature allows rapid movement of large blocks of data in memory or
I/O without disturbing the context of the on-chip ATCs or incurring
delays associated with translation table searches.

Section 4: Local Components

68040 CPU

4-30 V452 User Guide

Section 4: Local Components

68060 CPU

V452 User Guide 4-31

68060 CPU

Introduction
The Motorola® MC68060 is a fourth generation, 68000-compatible,
high-performance, 32-bit microprocessor that incorporates some RISC-
like features. The 68060 is superscalar, meaning it can perform multiple
instructions in a single clock cycle. Integrated within the 68060 chip are
dual 68040-compatible CPU integer cores, a 68040-compatible floating
point core, independent 8 KB instruction and data caches, a 68040-
compatible PMMU and a bus controller. The main features of the
68060 include:

1.6 — 1.7 times the 68040 performance on SPEC benchmarks at
the same clock rate with existing compilers.

Dual 8KB instruction and operand data caches (Harvard archi-
tecture) with independent, decoupled instruction and operand
pipelines.

Branch prediction logic with a 256-entry, 4-way set-associative,
virtually-mapped branch cache for improved branch instruction
performance.

Superscalar pipeline and dual integer execution units achieving
simultaneous, but not out-of-order, instruction execution.

IEEE standard, 68040, 68881/2 compatible floating point execu-
tion unit.

68040-compatible paged memory management unit with dual
64-entry address translation caches (ATCs).

Flexible, high-bandwidth synchronous bus interface.

Section 4: Local Components

68060 CPU

4-32 V452 User Guide

Upward user-object code compatibility with the 68040 and all
previous M68000 microprocessors

Below is a simplified block diagram showing the 68060’s main func-
tional blocks.

Local Bus Controller

Execution Units:

Dual Integer

Floating Point

V4xx Local Bus

Data
Memory Unit
(ATC, 8 KB Cache,

Memory Controller)
Instruction

Memory Unit
(ATC, 8 KB Cache,

Memory Controller)

Dual Operand

Pipeline Units

Instruction
Data Bus

Operand
Data Bus

Instruction
Fetch Unit

Simplified 68060 block diagram

Section 4: Local Components

68060 CPU

V452 User Guide 4-33

Additional 68060 documentation

This chapter is not meant to serve as a complete guide for programming
the 68060. For detailed 68060 information, refer to Motorola’s 68060
publications. These publications are available at:

Motorola Semiconductor Products Sector
Literature Distribution Center
P.O. Box 20924
Phoenix, Arizona 85036-0924

(800) 521-6274
(520) 994-6561

For information on technical training, contact:

Motorola Semiconductor Products Sector
World Marketing Training Operations EL524
P.O. Box 21007
Phoenix, Arizona 85036-0924

(800) 521-6274 (ask for “Training”)
(520) 897-3665

The following paragraphs introduce some of the primary features of the
68060 as set forth in the Motorola 68060 Design Specification,
Revision 2.0. Differences between the 68060 and 68040 processors are
noted where applicable.

Programming model
The 68060 integrates the functions of the integer unit, PMMU, and
FPU. The registers contained in the programming model provide access
and control for the three units. The registers are partitioned into two
levels of privilege: user and supervisor. User programs, executing in the
user mode, can only use the resources of the user model. System soft-
ware, executing in the supervisor mode, has unrestricted access to all
processor resources.

The user-level programmer model for the 68060 processor is identical
to the MC68020 with the addition of the floating point registers found
in the 68881/2 FPU and 68040 CPU.

Section 4: Local Components

68060 CPU

4-34 V452 User Guide

The supervisor-level programmer model is the same as the 68040 — it is
used exclusively by system programmers to implement operating
system functions, I/O control, and memory management subsystems.

The user-level programming model includes the following:

Eight 32-bit Data Registers (D0-D7)
Seven 32-bit Address Registers (A0-A6)
32-bit Program Counter (PC)
32-bit User Stack Pointer (USP, A7)
16-bit Status Register (as CCR, lower byte of SR only)
Eight 80-bit Floating-point Data Registers (FP0-FP7)
32-bit Floating-point Control Register (FPCR)
32-bit Floating-point Status Register (FPSR)
32-bit Floating-point Instruction Address Register (FPIAR)

The supervisor-level programming model includes all of the above user
registers plus the following registers:

One 32-bit Supervisor Stack pointer (SSP, A7)
32-bit Status Register (includes both lower and upper bytes)
One 32-bit Vector Base Register (VBR)
One 32-bit Source Function Code Register (SFC)
One 32-bit Destination Function Code Register (DFC)
One 32-bit Processor Configuration Register (PCR)

For Paged Memory Management Unit’s functions:

One 32-bit Supervisor Root Pointer (SRP)
One 32-bit User Root Pointer (URP)
One 32-bit Translation Control Register (TC)
Two 32-bit Instruction Transparent Translation Registers (ITT0, ITT1)
Two 32-bit Data Transparent Translation Registers (DTT0, DTT1)

For Cache and Bus functionality:

One 32-bit Cache Control Register (CACR)
One 32-bit Bus Control Register (BUSCR)

Section 4: Local Components

68060 CPU

V452 User Guide 4-35

Programmer’s model differences: 68060 vs. 68040

• The 68060 has one Supervisor Stack Pointer; the 68040 has the
Master Stack Pointer and the Interrupt Stack Pointer.

• Status Register format changes: a single T (trace) bit on the 68060,
not T1/T0 of the 68040. 68060 only provides trace capability on every
instruction (no trace on change of flow).

• There is no MMUSR register on the 68060.

• The following are new 68060 registers:

— Processor Configuration Register (PCR)

— Bus Control Register (BUSCR)

Data types
The 68060 supports the basic data types listed in the table below. Some
data types apply only to the integer unit, some only to the FPU, and
some to both the integer unit and the FPU. In addition, the instruction
set supports operations on other data types such as memory addresses.

68060 data types

Operand data type Size Support Notes
Bit 1 Bit IU --
Bit Field 1-32 Bits IU Field of Consecutive Bit
BCD 8 Bits IU Packed: 2 Digits/Byte - Unpacked: 1 Digit/Byte
Byte Integer 8 Bits IU,FPU --
Word Integer 16 Bits IU,FPU --
Long-Word Integer 32 Bits IU,FPU --
16-Byte 128 Bits IU Memory-Only,Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8 Bit Exponent, 23-Bit Mantissa
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11 Bit Exponent, 52-Bit Mantissa
Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

The three integer data formats common to both the integer unit and the
FPU (byte, word, and long word) are the standard twos-complement
data formats defined in the M68000 Family architecture. Whenever an
integer is used in a floating-point operation, the integer is automatically
converted by the FPU to an extended-precision floating-point number
before being used. The ability to effectively use integers in floating-point
operations saves user memory because an integer representation of a
number usually requires fewer bits than the equivalent floating-point
representation.

Section 4: Local Components

68060 CPU

4-36 V452 User Guide

Single-and double-precision floating-point data formats are implemented
in the FPU as defined by the IEEE 754 standard. These data formats are
the main floating-point formats and should be used for most calcula-
tions involving real numbers.

The extended-precision data format is also in conformance with the IEEE
754 standard, but the standard does not specify this format to the bit
level as it does for a single and double precision. The memory format
for the FPU consists of 96 bits (three long words). Only 80 bits are
actually used; the other 16 bits are reserved for future use and for long-
word alignment of the floating-point data structures in memory. The
extended-precision format has a 15-bit exponent, a 64-bit mantissa, and
a 1-bit mantissa sign. Extended-precision numbers are intended for use
as temporary variables, intermediate values, or where extra precision is
needed.

Data type differences: 68060 vs. 68040

The 68060 does not support quadword integers that are supported on
the 68040. Attempted execution of an instruction using quadword
integers will result in an “Unimplemented Integer” exception.

Address modes
The 68060 addressing modes are listed below. The register indirect
addressing modes support post-increment, pre-decrement, offset, and
indexing, which are particularly useful for handling data structures
common to sophisticated applications and high-level languages.

Addressing modes

Register Direct
Data Register Direct
Address Register Direct

Register Indirect
Address Register Indirect
Address Register Indirect with Post-increment
Address Register Indirect with Pre-decrement
Address Register Indirect with 16-bit displacement

Register Indirect with Index
Address Register Indirect with Index (8-Bit displacement)
Address Register Indirect with Index and base (16-, 32-bit) displacement)

Memory Indirect
Memory Indirect Post-indexed
Memory Indirect Pre-indexed
PC Memory Indirect Post-indexed
PC Memory Indirect Pre-indexed

Section 4: Local Components

68060 CPU

V452 User Guide 4-37

Addressing modes (continued)

Program Counter Indirect with 16-bit displacement
Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement)
PC Indirect with Index and base (16-, 32-bit) displacement)

Absolute
Absolute Short
Absolute Long

Immediate (byte, word, longword, single-precision, double-precision real)

The program counter indirect mode also has indexing and offset capa-
bilities; this addressing mode is typically required to support position-
independent software. In addition to these addressing modes, the
68060 provides index sizing and scaling features that enhance software
performance. Data formats are supported orthogonally by all arithmetic
operations and by all appropriate addressing modes.

Addressing mode differences: 68060 vs. 68040

The 68060 does not support extended-precision floating-point
immediate operands supported by the 68040. An attempt to use this
addressing mode will generate an “unimplemented EA” exception.

The 68060 does not support usage of immediate operands for the
FMOVEM load of floating-point control register (FPCR, FPSR, and
FPIAR) combinations that would require 64 or 96 bits of data. An
attempt to use this addressing mode will generate an “unimplemented
EA” exception.

Instruction set overview
The table on the next page summarizes the 68040 instruction set. A
changed instruction as it pertains to the 68060 is shown in bold italic
typeface. The table following this one lists the instruction set differences
between the ‘040 and ‘060 processors.

If execution of a non-supported interger instuction is attempted, the
68060 processor responds with a unique exception vector
(“unimplemented instruction”). Non-supported F (floating point)
opcodes generate a Line F Emulator exception.

For detailed information on the 68060 instruction set, refer to the
Motorola data book for the 68060 processor.

Section 4: Local Components

68060 CPU

4-38 V452 User Guide

68040 instruction set with 68060 differences noted

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend FSQRT Floating-Point Square Root
ADD Add FSUB Floating-Point Subtract
ADDA Add Address FTRAPcc Floating-Point Trap-On Condition
ADDI Add Immediate FTST Floating-Point Test
ADDQ Add Quick ILLEGAL Take Illegal Instruction Trap
ADDX Add with Extend JMP Jump
AND Logical AND JSR Jump to Subroutine
ANDI Logical AND Immediate LEA Load Effective Address
ASL, ASR Arithmetic Shift Left and Right LINK Link and Allocate
Bcc Branch Conditionally LSL,LSR Logical Shift Left and Right
BCHG Test Bit and Change MOVE Move
BCLR Test Bit and Clear MOVE16 16-Byte Block Move
BFCHG Test Bit Field and Change MOVEA Move Address
BFCLR Test Bit Field and Clear MOVE CCR Move Condition Code Register
BFEXTS Signed Bit Field Extract MOVE SR Move Status Register
BFEXTU Unsigned Bit Field Extract MOVE USP Move User Stack Pointer
BFFFO Bit Field Find First One MOVEC Move Control Register
BFINS Bit Field Insert MOVEM Move Multiple Registers
BFSET Test Bit Field and Set MOVEP Move Peripheral
BFTST Test Bit Field MOVEQ Move Quick
BKPT Breakpoint MOVES Move Alternate Address Space
BRA Branch MULS Signed Multiply
BSET Test Bit and Set MULU Unsigned Multiply
BSR Branch to Subroutine NBCD Negate Decimal with Extend
BTST Test Bit NEG Negate
CAS Compare and Swap Operands NEGX Negate with Extend
CAS2 Compare and Swap Dual Operands NOP No Operation
CHK Check Register Against Bounds NOT Logical Complement
CHK2 Check Register Against Upper and Lower Bounds OR Logical Inclusive OR
CINV Invalidate Cache Entries ORI Logical Inclusive OR Immediate
CLR Clear PACK Pack BCD
CMP Compare PEA Push Effective Address
CMPA Compare Address PFLUSH Flush Entry(ies) in the ATCs
CMPI Compare Immediate PTEST Test a Logical Address
CMPM Compare Memory to Memory RESET Reset External Devices
CMP2 Compare Register Against Upper and Lower Bounds ROL,ROR Rotate Left and Right
CPUSH Push then Invalidate Cache Entries ROXL,RORX Rotate with Extend Left and Right
DBcc Test Condition, Decrement and Branch RTD Return and Deallocate
DIVS,DIVSL Signed Divide RTE Return from Exception
DIVU, DIVUL Unsigned Divide RTR Return and Restore Codes
EOR Logical Exclusive OR RTS Return from Subroutine
EORI Logical Exclusive OR Immediate SBCD Subtract Decimal with Extend
EXG Exchange Registers Scc Set Conditionally
EXT, EXTB Sign Extend STOP Stop
FABS Floating-Point Absolute Value SUB Subtract
FADD Floating-Point Add SUBA Subtract Address
FBcc Floating-Point Branch SUBI Subtract Immediate
FCMP Floating-Point Compare SUBQ Subtract Quick
FDBcc Floating-Point Decrement and Branch SUBX Subtract with Extend
FDIV Floating-Point Divide SWAP Swap Register Words
FMOVE Move Floating-Point Register TAS Test Operand and Set
FMOVEM Move Multiple Floating-Point Registers TRAP Trap
FMUL Floating-Point Multiply TRAPcc Trap Conditionally
FNEG Floating-Point Negative TRAPV Trap on Overflow
FRESTORE Restore Floating-Point Internal State TST Test Operand
FSAVE Save Floating-Point Internal State UNLK Unlink
FScc Floating-Point Set According to Condition UNPK Unpack BCD

Note: Bold Italic items denote change for 68060. See table “68060/68040 hardware-supported instruction set
differences”

Section 4: Local Components

68060 CPU

V452 User Guide 4-39

68060/68040 hardware-supported instruction set differences

Mnemonic Description Notes

CAS Compare and swap with operand Emulation support on 68060 for misaligned
operand

CAS2 Compare and swap dual operands Emulation support on 68060, not implemented in
hardware

CHK2 Check register against upper and lower
bound

Emulation support on 68060, not implemented in
hardware

CMP2 Compare register against upper and
lower bound

Emulation support on 68060, not implemented in
hardware

DIVS.L Signed divide Emulation support on 68060 for 64/32

DIVU.L Unsigned divide Emulation support on 68060 for 64/32

FDBcc FP decrement and branch Emulation support on 68060, not implemented in
hardware

FINT FP integer part Implemented on hardware on 68060, not on
68040

FINTRZ FP integer part, round-to-zero Implemented on hardware on 68060, not on
68040

FMOVEM FP move multiple data registers Emulation support on 68060 for dynamic register
list

FScc FP set according to condition Emulation support on 68060, not implemented in
hardware

FTRAPcc FP trap on condition Emulation support on 68060, not implemented in
hardware

LPSTOP Low power stop Implemented on 68060, not on 68040

MOVEC Move control registers Revised functionality

MOVEP Move peripheral Emulation support on 68060, not implemented in
hardware

MULS.L Signed long multiply Emulation support on 68060 for 32 x 32 > 64

MULU.L Unsigned long multiply Emulation support on 68060 for 32 x 32 > 64

PTEST Test a logical address Not implemented on 68060, PLPA added on
68060 (equivalent functionality)

PLPA Load physical address Implemented on 68060, not on 68040

Integer unit
Refer to the discussions on Programming mode, Data types, Addressing
modes, and Exception processing for lists of programming differences
between the 68060 and 68040 integer units.

Section 4: Local Components

68060 CPU

4-40 V452 User Guide

Exception processing
Exception processing is made up of actions by the processor which are
outside the normal processing associated with the execution of
instructions. The exception state can be externally or internally forced.
The externally generated exceptions are interrupts, bus errors, and reset
conditions. The interrupts are requests from external devices for proces-
sor action; whereas, the bus error and reset signals are used for access
control and processor initialization. The internally generated exceptions
come from instructions, address errors, tracing, or break points.

The TRAP, CHK, CHK2, and DIV instructions can all generate
exceptions as part of their instruction execution. Tracing behaves like a
very high-priority, internally-generated interrupt whenever it is
processed. The other internally-generated exceptions are caused by
unimplemented floating-point instructions, illegal instructions,
instruction fetches from odd addresses, and privilege violations and for
invalid descriptors encountered during table searches.

Exception processing for the 68060 occurs in the following sequence:

➊ an internal copy is made of the SR,
➋ the vector number of the exception is determined,
➌ current processor status is saved, and
➍ the exception vector offset is determined by multiplying the

vector number by four. This offset is then added to the contents
of the VBR to determine the memory address of the exception
vector. The instruction at the address given in the exception
vector is fetched, and normal instruction decoding and
execution is started.

The 68060 processor features a simplified exception processing model
since it implements the concept of instruction restart to resume
execution, rather than instruction continuation. This restart approach
causes the faulted instruction to be refetched and re-executed from the
beginning.

Section 4: Local Components

68060 CPU

V452 User Guide 4-41

Exception differences: 68060 vs. 68040

• Exception type changes:

— The 68060 adds “Unimplemented EA” exception type
— The 68060 adds “Unimplemented Integer” exception type
— The 68060 does not implement the “Uninitialized Interrupt”

exception type.
• Exception stack frame changes:

— The Type 1 (Throwaway 4-word), because there is no Master
Stack Pointer, and Type 7 (Access Error, 30-word) stack frames
of the 68040 are not implemented on the 68060.

— A Type 4 (8-word) stack frame for Access Error exceptions is
introduced with the 68060 (with a new Fault Status Longword
entry).

• PC and Address Longword Stack contents have changed on 68060
from the 68040 for selected exception types.

• The 68060 processor does not implement “trace on change of flow”.

• Access error changes:

On the 68060 processor, an access error encountered in the
Instruction Fetch Pipeline will not be acted upon until execution
is attempted for the instruction associated with the access error.
The 68060 implements both a precise and imprecise exception
model related to bus errors on write operations. Exceptions
occurring on writes from the push buffer behave differently on
the 68060 than on the 68040

Section 4: Local Components

68060 CPU

4-42 V452 User Guide

Exception vector assignments (V452 Series boards and the 68060)

Vector
number

(dec)

Vector
number

(hex)

Vector
address
(hex)

Offset
space

Assignment Status
Asserted

0 00 000 SP Reset Initial Interrupt Stack Pointer ---
1 01 004 SP Reset Initial Program Counter ---
2 02 008 SD Bus Error Yes
3 03 00C SD Address Error Yes
4 04 010 SD Illegal Instruction No
5 05 014 SD Integer divide by zero No
6 06 018 SD CHK, CHK2 Instruction No
7 07 01C SD TRAPcc, TRAPV Instructions No
8 08 020 SD Privilege Violation No
9 09 024 SD Trace Yes

10 0A 028 SD Line 1010 Emulator No
11 0B 02C SD Line 1111 Emulator No
12 0C 030 SD Emulator Interrupt
13 0D 034 SD — Unassigned, reserved — *** No
14 0E 038 SD Format Error No
15 0F 03C SD Uninitialied Interrupt Yes

16 - 23 10-17 40 - 5C SD Unassigned, (EZ-bus modules) **
24 18 060 SD Spurious Interrupt Yes
25 19 064 SD On-board Level 1 Interrupt ** Yes
26 1A 068 SD On-board Level 2 Interrupt ** (counters; 82C54) Yes
27 1B 06C SD On-board Level 3 Interrupt ** (CPU Mailboxes) Yes
28 1C 070 SD On-board Level 4 Interrupt ** (EZ-bus modules) Yes
29 1D 074 SD On-board Level 5 Interrupt ** (Async. serial interface; 2692 UART) Yes
30 1E 078 SD On-board Level 6 Interrupt ** (timers; 2692 UART) Yes
31 1F 07C SD On-board Level 7 Interrupt ** (ABORT, Bad parity, ACFail, SysFail) Yes

32 - 47 20-2F 80 - BC SD TRAP #0-15 Instruction Vectors No
48 30 0C0 SD FP Branch or Set on Unordered Condition
49 31 0C4 SD FP Inexact Result No
50 32 0C8 SD FP Divide by Zero No
51 33 0CC SD FP Underflow No
52 34 0D0 SD FP Operand Error No
53 35 0D4 SD FP Overflow No
54 36 0D8 SD FP Signaling NAN No
55 37 0DC SD — FP Unimplemented data type — * No

56 59 38 E0 - EC SD — Unassigned, reserved — *** No
60 0F0 SD Unimplemented Effective Address
61 0F4 SD Unimplemented Integer Instruction

62 - 63 F8 - FC SD Reserved
64 - 255 40-FF 100-3FC SD User-defined Vectors (192) (EZ-bus modules)

Notes: SP = Supervisor Program Space; SD = Supervisor Data Space
* Assignment is different than that used on the 68030.

** Assignment is particular to the V452 Series boards.
*** Exception is assigned for 68020 and 68030 processors, but not the 68060.

On-board interrupts appear in bold face.
The user-defined vectors (64 to 255) may be assigned to the EZ-bus (for daughter modules) if desired.

Section 4: Local Components

68060 CPU

V452 User Guide 4-43

Instruction and data caches
Studies have shown that typical programs spend much of their execu-
tion time in a few main routines or tight loops. Earlier members of the
68000 family took advantage of this locality-of-reference phenomenon
to varying degrees. The 68040 and 68060 takes further advantage of
cache technology with its two, independent, on-chip, physical address
space caches, one for instructions and one for data. The caches reduce
the processor's external bus activity and increase central processor unit
(CPU) throughput by lowering the effective memory access time. For a
typical system design, the large caches of the 68060 yield a very high
hit rate, providing a substantial increase in system performance.
Additionally, the caches are automatically burst-filled from the external
bus whenever a cache miss occurs.

The autonomous nature of the caches allows instruction stream fetches,
data stream fetches, and a third external access to occur simultaneously
with instruction execution. For example, if the CPU requires both an
instruction stream access and an external peripheral access and if the
instruction is resident in the on-chip cache, the peripheral access pro-
ceeds unimpeded rather than being queued behind the instruction
fetch. If a data operand is also required and is resident in the data
cache, it can also be accessed without hindering either the instruction
access or the external peripheral access. The parallelism inherent in the
CPU also allows multiple instructions that do not require any external
accesses to execute concurrently while the processor is performing an
external access for a previous instruction.

Cache differences: 68060 vs. 68040

• Each cache is 8K bytes, vs. 4K bytes on the 68040

• The Operand Data Cache is organized in a banked structure to allow
simultaneous read/write accesses.

• Cache entry dirty (modified) designation on the 68060 is done on a
line basis, as opposed to one dirty bit per longword on the 68040.

• Cache pushes, whether initiated by the CPUSH instruction or by the
replacement algorithm, are always line-size. In addition to line pushes,
the 68040 could also do longword sized pushes when only one
longword in the line was dirty.

• Operands which require bus transactions are not re-ordered on the
68060 processor (i.e., operand write bus cycles are not deferred past
read bus cycles).

Section 4: Local Components

68060 CPU

4-44 V452 User Guide

• Only snoop invalidate is supported; the 68040 supported sourcing
and sinking of modified cache data in addition to invalidate. On the
68060 processor, if a snoop hits an entry in either cache, the line will
only be invalidated. The 68040 could source a dirty entry before
invalidating it.

• The 68040 has a four-deep write buffer for additional performance
when writing to writethrough and cache-inhibited imprecise mode
pages. This provides decoupling of the processor pipeline from extenal
memory for write operations for these references.

• The 68060 implements a “no allocate mode,” on a per cache basis,
that provides a frozen cache capability.

Cache organization

The four-way set-associative instruction and operand data caches have
128 sets of four 16-byte lines for a total cache storage of 8K bytes each.
Each 16-byte line contains an address tag and state information. State
information for each entry consists of a valid flag for the entire line in
both instruction and data caches and write status (dirtiness) for each
line in the data cache.

The caches are accessed by physical addresses from the on-chip
PMMUs. The translation of the upper bits of the logical address occurs
concurrently with the accesses into the set array in the cache by the
lower address bits. The output of the ATC is compared with the tag field
in the cache to determine if one of the lines in the selected set matches
the translated physical address. If the tag matches and the entry is valid,
then the cache has a hit.

If the cache hits and the access is a read, the appropriate long word
from the cache line is multiplexed onto the appropriate internal bus. If
the cache hits and the access is a write, the data, regardless of size, is
written to the appropriate portion of the corresponding long-word entry
in the cache.

When a data cache miss occurs and a previously valid cache line is
needed to cache the new line, any dirty data in the old line will be
internally buffered and copied back to memory after the new cache line
has been loaded. Pushing of dirty data can be forced by the CPUSH
instruction.

Cachability of data in each memory page is controlled by two bits in the
page descriptor for each page. Cachable pages may be either write-
through or copy-back, with no write-allocate for misses to write-through
pages. Noncachable pages may also be specified as noncachable I/O,

Section 4: Local Components

68060 CPU

V452 User Guide 4-45

forcing accesses to these pages to occur in order of instruction execu-
tion.

Cache coherency

Cache coherency is an important consideration while using the 68060
in a mult-ported local memory environment. This is because local
memory may be updated by DMA devices, other VMEbus masters, or
another 68060 chip causing the data in the 68060’s cache from that
same area to be invalid or stale.

Cache coherency can also be a problem while the 68060 is operating
in a high-performance mode called copyback mode. In copyback mode
the 68060 can update its own cache without updating local memory as
well. A subsequent read of local memory by a DMA engine or other
Master in this case would also return stale data.

One way to maintain cache coherency is through bus snooping. With
bus snooping, the 68060 monitors the external bus during bus cycles
generated by other masters (bus snooping). If the SNOOP\ pin is
asserted, read and write cycles of other bus masters will snoop the
instruction and operand data caches, and the push buffer, invalidating
entries that match. The instruction cache does not monitor internal
operand data accesses.

Bus snooping occurs only when the bus is granted away from the
68060 processor. The processor may continue to operate out of the
caches until it needs to access the bus. The bus snooper is given priority
over the processor for accesses into the cache which occur
simultaneously. Therefore, bus snooping prevents the processor from
accessing the caches for the duration of the tag compare.

Other memory updating techniques supported by the processor include
copyback and writethrough. Refer to the 68060 data book for more
information on maintaining cache coherency.

Setting up the 68060 caches

The paragraphs below describe how to set up the 68060’s data and
instruction caches after a power-up or reset:

Invalidating cache contents — After a power cycle or reset, any instruc-
tions or data remaining in the 68060’s internal caches are not reliable
and need to be invalidated early in the initialization sequence. This can
be accomplished by issuing the following 68040 assembler commands:

Section 4: Local Components

68060 CPU

4-46 V452 User Guide

cinva
nop

If you do not have assembler that specifically supports the 68040, the
following “hand-assembled” command can also be used:

.short 0xF4DB
nop

Note The nop instruction is recommended by
Motorola to resynchronize the 68040’s
internal pipelines.

Using the Transparent Translation register — Certain types of data are
not compatible with the 68060’s caching and processing techniques.
The Transparent Translation register in the 68060 identifies areas in
memory to be "translated" directly or given special handling by the
68060’s MMU. Refer to the Motorola 68040 or 68060 databook for
more detailed information about this register.

The address space assigned to I/O functions is a particularly important
area for such special treatment for the following two reasons:

I/O areas are not compatible with data caching because the data
they contain can be changed by an external source without the
knowledge of the 68060’s cache circuitry.

Normally, I/O activity must be processed in a strict sequence of
steps. However, unless otherwise instructed by the MMU, the
68060 may change the order of read and write instructions to
optimize its own operations without regard for the needs of
external devices.

As a result, the data (dtt0) in I/O regions (above 0xFE00 0000 on V452
Series boards) must be identified for “serialized” processing and must
be inhibited from data caching using the following set of 68040 assem-
bler commands:

movel #0xFE01C040, d0
movec d0, dtt0

The hexadecimal expression in the movel instruction given above
directs the 68060 to perform the following individual actions:

➊ The FE byte designates the 16 MB area from 0xFE00 0000 to
0xFEFF FFFF as the base area for transparent translation.

Section 4: Local Components

68060 CPU

V452 User Guide 4-47

➋ The 01 byte designates an additional 16 MB area above the
base area (0xFF00 0000 to 0xFFFF FFFF) for transparent
translation.

➌ The C0 byte enables the transparent translation register to con-
tain the memory range expressed in the previous two bytes. It
also enables transparent translation for both the user and super-
visory modes.

➍ The 40 byte directs the 68060 to inhibit caching, and to serialize
the designated memory region.

In lieu of a 68040-compatible assembler, the following sequence can be
used which includes a hand-assembled command for the movec com-
mand listed above:

movel #0xFE01C040, d0
.long 0x4E7B0006

Enabling and disabling the 68060 caches — With setup complete, the
instruction and data caches can be enabled using the following 68030-
compatible assembler command:

movel #0x80008000, d0 |Write to intermediary scratch register
movec d0 cacr |Enable data & instruction caches

To disable the instruction and data caches execute the following as-
sembler command:

movel #0x00000000, d0 |Write to intermediary scratch register
movel d0 cacr |Disable data & instruction caches

Note The cacr register’s Bit 31 (0xxx xxxx)
turns on and off the 68060’s data cache.
Bit 15 (xxxx 0xxx) turns on and off the
68060’s instruction cache. Refer to the
Motorola ‘060 User’s Manual for more
information on additional cache
configuration options provided by the
cacr register.

Section 4: Local Components

68060 CPU

4-48 V452 User Guide

Paged memory management unit (PMMU)
Like the 68040, the 68060 includes independent instruction and data
paged memory management units (PMMUs). The primary function of
the PMMU is to translate logical addresses to physical addresses using
translation tables stored in physical memory. The address translation
cache (ATC) retains copies of recently used address translations. The
ATC provides a fast mechanism for address translation by avoiding the
overhead associated with table lookup to obtain the mapping of logical
to physical addresses.

PMMU differences: 68060 vs. 68040

• There is no MMUSR. The information contained in the 68040
MMUSR is part of the access error exception stack frame on the 68060
processor.

• Instruction changes (PTEST, MOVEC, and PLPA):

— No PTEST instruction on the 68060 processor, it traps as an
illegal instruction exception.

— New PLPA instruction, load physical address, added to perform
PMMU translation/tablewalk and return a 32-bit physical
address.

— MOVEC to/from MMUSR: traps as an illegal instruction
exception.

• The 68060 implements a dedicated hardware tablewalker.

• Page table entries cannot be cached in the Operand Data Cache; the
tablewalker interfaces directly to the Bus Controller.

• Differences in Fault Type Information on PMMU access error
exceptions:

— Exception Stack Frame information contained in Fault Status
Longword

— No PTEST instruction necessary on 68060

• No ATC update on the 68060 on tablewalks that terminate due to
invalid descriptor type.

• The 68060 implements a “no allocate mode” for the ATCs.

Section 4: Local Components

68060 CPU

V452 User Guide 4-49

PMMU architecture summary

• Same translation table and register formats as the 68040

• 32-bit logical address translated to 32-bit physical address

• User-defined 2-bit physical address extension (UPA pins)

• Separate instruction and data ATCs

• ATCs each have 64 entries organized in 4-way sets

• Translations that hit in the ATC add no additional time to the access

• Three level page table hierarchy with optional indirection at table
descriptor

• Separate supervisor and user translation trees

• History information automatically maintained in the table descriptors

• 4K or 8K page size

• Two memory blocks per PMMU may transparently bypass the ATC

• Instruction and operand data cache modes selectable by page or by
transparent block

• Supervisor and write protections

• External PMMU-disable (MDIS pin) for emulator support

• Cache-inhibit output on a page or transparent block basis

• Dedicated tablewalk hardware implementation

• Table descriptors are not cached

Section 4: Local Components

68060 CPU

4-50 V452 User Guide

Section 4: Local Components

CPU Mailbox

V452 User Guide 4-51

CPU Mailbox

The V452 Series mailbox circuitry provides a flexible and convenient
way to implement interrupt-driven inter-process communications
control:

By writing to its own mailbox, the Mailbox circuitry allows an
individual CPU to post an interrupt to itself while processing a
routine.

Because each CPU on dual-CPU V452 Series boards has its own
separate Mailbox, this circuitry can be invaluable in coupling the
dual CPUs for shared processing.

Mailboxes allow external bus Masters from either the EZ-bus or
the VMEbus to effect processing by the on-board CPU(s) via an
“on-board” or local interrupt.

This chapter describes the features and functions for the CPU mailbox.

Mailbox memory areas
The memory areas for writing to and reading from each Mailbox are
located in different places in the V452 Series address map.

Mailbox write area

The CPU mailbox consists of a message area in memory and a 64x4
FIFO. Whenever a 32-bit write access is made anywhere in the CPU’s
message area in main memory the FIFO automatically copies and stores
the four highest data bits written. The FIFO stores this four-bit message
and generates an interrupt to the appropriate CPU, which reads the
message from the FIFO.

Section 4: Local Components

CPU Mailbox

4-52 V452 User Guide

The main memory area used to write a message to the on-board CPU
lies within the multi-ported memory space accessible by the on-board
CPU(s), VMEbus Masters, and/or EZ-bus Masters.

Each on-board CPU has a non-steerable 128-byte Mailbox write area in
the last 256 bytes of on-board DRAM (regardless of the size of on-
board memory) as follows:

0XXF FF00 — 0XXF FF7F Mailbox 0 — CPU-X
0XXF FF80 — 0XXF FFFF Mailbox 1 — CPU-Y (dual-CPU models only)

Note Each Mailbox write area is completely
separate from the other. For example,
accesses to Mailbox 1 on V452 Series
models containing only 1 CPU has no
effect on single CPU models or to CPU-X
on dual-CPU models.

Mailbox read area

As mentioned in the previous paragraphs, the mailbox circuitry for each
on-board CPU includes a 64x4 FIFO. After it copies the top four bits
(D28-31) corresponding to each message, the FIFO serves as read area
for the on-board CPU.

The CPU “reads” its Mailbox by performing a read access to this FIFO
at memory location:

FE30 0000

Note On dual-CPU models the Mailbox FIFO
read area is located at this same address
for both CPUs. The Mailbox circuitry
allows each CPU to access only to read
only its own Mailbox.

Each FIFO can store four bits in this fashion corresponding to up to 64
separate messages.

Section 4: Local Components

CPU Mailbox

V452 User Guide 4-53

The 64-deep FIFOs ensure the integrity of
up to 64 messages without loss of data.
However, the hardware does not provide
any provision to prevent overruns once
this limit has been met. If the board is to
operate in an environment where more
than 64 messages may be pending at
once, consider implementing a software-
driven counter or “test and set” sema-
phore that can signal when the FIFO is
full.

Mailbox interrupts
Both Mailbox FIFOs automatically generate an on-board Level 3
interrupt to the corresponding CPU whenever they contain at least one
message. To have an effect, however, the on-board CPU(s) must be
programmed to receive the Mailbox interrupt by writing to the appro-
priate register location in the Interrupt Control register.

Enabling the mailbox(s) as interrupt source(s)

The mailbox for each CPU is a non-steerable interrupt source:

On single-CPU boards there is only one mailbox,

On dual-CPU boards there are two mailboxes but each CPU has
access only to its own mailbox.

To enable Mailbox0 as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE39000D |Enable Mailbox0 to CPU-X

To enable Mailbox1 as an interrupt source to CPU-Y on a dual-CPU
board, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800D |Enable Mailbox1 to CPU-Y

Section 4: Local Components

CPU Mailbox

4-54 V452 User Guide

Disabling the mailbox(es) as interrupt source(s)

The mailbox(es) can be disabled as an interrupt source(s) by writing to
the Interrupt Control registers as described below.

To disable Mailbox0 as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE39000C |Disable Mailbox0 to CPU-X

To disable Mailbox1 as an interrupt source to CPU-Y on a dual-CPU
board, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800C |Disable Mailbox1 to CPU-Y

Mailbox interrupt control

The Mailbox FIFO’s ability to generate an interrupt provides interrupt
control over multiple message sources.

The FIFO automatically generates an interrupt whenever it contains a
message and automatically clears the interrupt when empty.

For example, consider three processors: A, B, and C. Suppose processor
B writes to processor A's Mailbox. While processor A is responding to
the resulting interrupt, suppose processor C also writes to processor A’s
Mailbox. The following actions occur:

➊ Proc B’s access to Proc A’s Mailbox automatically causes a byte
to be written to the Mailbox FIFO which in turn generates an
interrupt to Proc A.

➋ Proc A fetches the message written by Proc B and processes the
interrupt.

➌ After returning from interrupt processing, the FIFO, which still
contains the byte from Proc C's access to the mailbox, generates
another interrupt.

➍ Proc A fetches this second byte of data from the FIFO and pro-
cesses the interrupt.

➎ After returning from the second interrupt, the FIFO is now empty
and Proc A resumes its previous processing activities.

Section 4: Local Components

CPU Mailbox

V452 User Guide 4-55

Message systems
The meaning of these 4-bit “messages” in the Mailbox FIFO is estab-
lished by system software. One common use of these four bits is to
identify the source or Master (i.e., the VMEbus, daughter module, or
68060) of the device sending the message. If multiple message sources
are present, it is possible to use the FIFO and mailbox memory area to
create a sorting bin for incoming messages as follows:

➊ Allocate a section of mailbox memory for each source of mes-
sages (Mailbox Master) in the Mailbox write area.

➋ When a corresponding Mailbox Master wants to send a mes-
sage, it writes a data word, byte, or longword into its assigned
Mailbox. The top four bits of the word contain the ID code of
the requesting Master.

➌ When the receiving CPU encounters the resulting interrupt, it
reads the Mailbox FIFO to determine the Master ID.

➍ The receiving CPU then looks for the message in the address lo-
cation of Mailbox memory that is assigned to the identified
Mailbox Master.

If there is only a single message source, another common use of the 4-
bit message is to indicate a specific location in a pre-arranged memory
range where the remainder of the message can be found.

Section 4: Local Components

CPU Mailbox

4-56 V452 User Guide

Section 4: Local Components

CPU Watchdog

V452 User Guide 4-57

CPU Watchdog

V452 Series boards use the Dallas Semiconductor DS1232 Micro
Monitor chip (or equivalent) as the primary component in the CPU
Watchdog circuitry. Additional product information for this chip is
available from:

Dallas Semiconductor
4401 South Beltwood Parkway
Dallas, Texas 75244-3292
(214) 450-0448

The V452 Series CPU Watchdog circuitry can be programmed to
monitor the status of the on-board CPU(s) and assert a board-level Local
Reset, equivalent to manually toggling both front panel RESET switches
if either one and/or both of the following conditions occur.

CPU Run monitor — If enabled to do so, the Watchdog Run
monitor can assert a reset unless it is toggled off and then back
on again at least every 250 ms. The default condition for the Run
monitor is disabled.

CPU Halt monitor — The Watchdog can also assert a reset if the
on-board CPU(s) halts. The default condition for the Halt monitor
is also disabled.

In addition, the CPU Watchdog can be deactivated completely by dis-
abling both of the monitors listed above.

Section 4: Local Components

CPU Watchdog

4-58 V452 User Guide

Control registers
V452 Series boards control the CPU Watchdog circuitry via software-
programmable registers listed in the table below. Using these registers
you can set the Watchdog to monitor the software’s run status, the
CPU’s halt status or both.

Extended Mode register (0xFE38 4003)

Hex data Function For more info, see chapter
04 Disable CPU Watchdog Run monitor (default) Status, ID & Mode
0C Enable CPU Watchdog Run monitor registers

Extended Control register (0xFE38 C000)

Reg address Function For more info, see chapter
FE38 C004 Disable CPU Watchdog Halt monitor (default) -—

FE38 C005 Enable CPU Watchdog Halt monitor —

Watchdog Run monitor
The CPU Watchdog circuitry can be used to monitor the run status of
the application software by responding to the execution (or the lack of
execution) of special access instructions imbedded in application pro-
grams.

Once enabled, the Watchdog Run monitor automatically asserts a
board-level Local Reset if the CPU(s) fails to execute the enable instruc-
tion sequence described below at least every 600 ms. To hold off a
reset, this sequence must be inserted into a module of the application
software that can ensure that it executed within this time frame.

Note The Run monitor circuitry can be held off
(and/or disabled) from asserting a reset
only by a supervisor write accesses from
the CPU. Accesses from the VMEbus or
an active VSB bus has no effect.

Using this technique the Watchdog Run monitor can effectively watch
program execution to ensure particular sequences execute successfully.
If the sequence fails to complete (which results in the reset hold off
instructions not being executed), the Watchdog automatically resets the
board (or the entire VMEbus if the board is also serving as the System
Controller) thereby returning the system to a “safe” state.

Section 4: Local Components

CPU Watchdog

V452 User Guide 4-59

The paragraphs below describe the instructions required to use the
CPU Watchdog Run monitor.

Enabling the Run monitor

After power cycling or a rest, the Watchdog Run monitor is disabled. To
enable it, execute the following 68030 (or above) assembler instruc-
tions to toggle off and then on the Run monitor:

moveb #0x04, 0xFE384003
moveb #0x0C, 0xFE384003

Note Location 0xFE38 4003 is the V452 Series
Extended Mode register. For more
information, see the V452 Series internal
registers chapter in Section 3.

Holding off a reset

Once enabled, the Watchdog automatically asserts a board-level Local
Reset if the CPU(s) fails to repeat the same enable instruction sequence
shown above at least every 250ms.

Specifications for the Dallas 1232 chip list the tolerance for the access
period at 250ms–1000ms with 600ms as the typical value.

Note The Run monitor circuitry can be held off
(and/or disabled) from asserting a reset
only by a supervisor write accesses from
the CPU. Accesses from the VMEbus or
an active VSB bus has no effect.

Disabling the Run monitor

The Run monitor is disabled whenever the board is reset or after execu-
tion of the following 68030 (or above) assembler instruction:

moveb #0x04, 0xFE384003

Section 4: Local Components

CPU Watchdog

4-60 V452 User Guide

Watchdog Halt monitor
The CPU Watchdog circuitry can be used to monitor the HALT status of
the on-board CPU(s). Once enabled, the Watchdog Halt monitor auto-
matically asserts a board-level Local Reset if the CPU(s) halts or hangs.

Note The only way to hang the CPU while the
Watchdog Halt monitor is enabled is to
attempt an VMEbus access while no
System Controller is active.

The paragraphs below describe the instructions required to use the
CPU Watchdog Halt monitor.

Disabling the Halt monitor

After power cycling or a reset, the Watchdog Halt monitor is disabled.
To enable it, execute the following 680x0 assembler instruction:

moveb #0x00, 0xFE38C005

Note Location 0xFE38 C004 is located within
the V452 Series Extended Control
register. For more information, see the
V452 Series internal registers chapter in
Section 3.

Enabling the Halt monitor

The Halt monitor is disabled whenever the board is reset or after execu-
tion of the following 68030 (or above) assembler instruction:

moveb #0x00, 0xFE38C004

Note Issuing a 68000 STOP instruction stops
the CPU but doesn't halt it. Thus, you can
safely stop the CPU to wait for an inter-
rupt without causing the Watchdog Halt
monitor to assert a reset.

Section 4: Local Components

CPU Watchdog

V452 User Guide 4-61

Dual-CPU considerations

On dual-CPU models, it may be desirable to disable the Halt monitor so
that the CPU that remains running can debug and reset the halted CPU.

Disabling all Watchdog functions
Both the Watchdog Halt and Run monitors are disabled in the default
condition. If they are subsequently enabled, the single assembly
instruction listed below can be used to to disable both features at once:

moveb #0x00, 0xFE38C004

It is also possible to disable both of the Watchdog monitors by resetting
the V452 Series board.

Section 4: Local Components

CPU Watchdog

4-62 V452 User Guide

Section 4: Local Components

Dynamic RAM

V452 User Guide 4-63

Dynamic RAM

All V452 Series boards use extended data out dynamic RAM (EDO
DRAM) on a plug-in board. The EDO DRAM is multi-ported, that is, it is
accessible by the following devices:

The on-board CPU(s).
Daughterboard Master(s) across the Synergy EZ-bus.
The on-board Block Transfer (BLT) DMA engine.
Other VMEbus Masters.

The CPU and EZ-bus daughter module Master can access on-board
DRAM directly at the addresses listed in the Address map chapter. VME
Masters can access on-board DRAM via an access window described
later in the VME Slave interface chapter.

This chapter describes the architecture and operation of the DRAM.

DRAM access optimization
DRAM memory on Synergy CPU boards is optimized to allow the
fastest possible accesses by the on-board CPU chip and for BLT DMA
transfers. Although this approach tends to reduce certain benchmarks
for single-cycle accesses from the VMEbus, the net result is a significant
improvement to overall system performance because memory accesses
by the on-board CPU and for BLTs represent a very large percentage of
total memory activity.

Section 4: Local Components

Dynamic RAM

4-64 V452 User Guide

DRAM tuning strategies
CPU board performance is strongly affected by the tuning of the RAM
speed to the CPU speed. The paragraphs below describe three DRAM
tuning strategies:

Maximum MIPS per MHz Maximize the performance of the SBC by
choosing higher-speed DRAM for a given
CPU speed thus reducing DRAM wait-
states. This strategy makes sense when
only one CPU speed is available or when
the fastest CPU available is still below
your performance expectations.

Maximum MIPS per dollar Maximize performance by upgrading to
a higher-speed CPU rather than to faster
and significantly more expensive RAM.
This strategy is particularly well-suited to
the 68040/060, which offers multiple
clock speeds, and in cases where a large
amount of DRAM would need to be
replaced.

The V452 Series burst mode DRAM can provide 4-1-1-1 clock read and
4-2-2-2 clock write accesses. As an example of what these numbers
represent, a 4-1-1-1 burst read cycle means the CPU fetches 4
consecutive, uninterrupted longwords from memory. The first longword
is fetched in 4 clock cycles and the additional 3 longwords are each
fetched in 1 clock cycle each. Therefore, a 4-1-1-1 burst cycle fetches 4
longwords in a total of 7 clock cycles (4+1+1+1=7), which is equal to
an average cycle time per longword of 1.75 clock cycles (At 50 MHz a
clock cycle is equal to 20 nanoseconds). At one long word/35
nanoseconds (20 x 1.75) yields a data transfer rate of 114 MB/s.

Both the 68040/060 data and instruction caches use burst accesses to
fill themselves. But to get any benefit from the burst accesses, the
caches must be enabled which automatically enables burst mode. For
general information about the operation of the cache, see the Cache
Control register discussion in the Motorola 68040/060 manual. For
more information about turning on the caches, see Setting up the V452
Series software in the Getting Started section.

The following table shows the relative performance in Dryhstones of
various DRAM/CPU combinations for the currently available speeds of
68040, 68030, and 68020 processors.

Section 4: Local Components

Dynamic RAM

V452 User Guide 4-65

Relative speed of 68040-68020 designs (in dhrystones)

MHz 68040 68030 68020
cycles 3-111* 4-111* 2 3 4-222* 5-222* 0-wait 1-wait

12.5 — — — — — 4847 4020
16.6 — — — — — 6437 5338
20.0 — 9460 8230 7473 7095 7757 6432
25.0 32600 11825 10264 — 8868 — 8041
33.3 43030 15750 13717 — 11812 — 10710
50.0 — 23500 20500 — 17500 — —

Notes: * Access speed listed is for read accesses.

The performance figures are shown in Dhrystones. Because the
Dhrystone benchmark is affected by the compiler used as well as the
hardware performance, the absolute values shown are less important
than the relative values for the different CPU-DRAM configurations. The
configurations giving the best MIPS/Dollar are shown in this type face.

Burst transfer operation
The 68040/060 employs a special type of data transfer called a burst.
This is used to transfer a cache line (16 bytes) between the data or
instruction caches and external memory. The V452 Series boards
provide support for burst transfers to/from the main onboard DRAM
memory. The advantage of the burst transfer is its speed. A burst read
transfer moves 16 bytes of data in 6 clock cycles, whereas a non-burst
16 byte transfer requires 15 clock cycles, for a 2.5-to-1 speed
improvement.

The burst transfer is used only when 68040/060 caching is enabled.
Thus, the caches must be enabled to obtain the best performance from
the DRAM. However, the MMU transparent translation registers must
first be set up to disable caching of I/O locations. For more information
about cache operations, see the appropriate CPU chapter that appears
earlier in this section.

Memory parity checking
Although modern dynamic RAM is very reliable, it is still subject to
errors. As a result, DRAM is often designed with parity checking in
order to increase the likelihood that memory failures will be detected.

Each 8-bit byte in the on-board memory has an associated 9th bit which
is used to encode odd parity for that byte. Odd parity is generated for

Section 4: Local Components

Dynamic RAM

4-66 V452 User Guide

each byte whenever a write of any size (32 bits, 16 bits or 8 bits) is per-
formed, that is, the 9th bit is set or cleared in order to make the number
of one’s in the 9-bit byte be an odd number. If parity checking is
enabled, even parity results in a parity error.

All V452 Series CPU boards provide longword parity detection that can
be turned on or off. It is also possible (if desired) to configure the board
to assert a Level 7 interrupt following the detection of parity errors.
When it encounters a parity error (with parity checking enabled), the
error detection circuitry writes a 1 (or high) to bit 8 in the Status register
(0xFE38 0002). The paragraphs below describe functional aspects and
some operational considerations for using memory parity checking on
V452 Series boards.

Enabling/disabling parity checking

After DRAM initialization, it is possible to safely enable memory parity
checking by writing to the Primary Mode register (0xFE38 0003).

During power-up or after a reset, parity checking defaults to the dis-
abled state. To enable parity checking, write 0x0E to the Primary Mode
register using the following 68000 assembler instruction:

moveb #0x0E, 0xFE38 0003 |Enable parity checking

To disable parity checking, write 0x06 to the Primary Mode register
using the following 68000 assembler instruction:

moveb #0x06 0xFE38 0003 |Disable parity checking

Enabling/disabling parity error interrupts

If memory parity checking is enabled, V452 Series boards can also be
configured to generate a Level 7 interrupt whenever a parity error
occurs. During power-up or after a reset, however, the maskable Level
7 interrupt is disabled. To enable it on a single-CPU board or for CPU-X
on a dual-CPU board, perform a write access to location 0xFE39 4001
in the Interrupt Control register using the following 68000 assembler
instruction:

moveb #0x00, 0xFE39 4001 |Enable Level 7 int to CPU-X

To enable the Level 7 parity error interrupt for CPU-Y on the dual-CPU
board, perform a write access to location 0xFE39 C001 in the Interrupt
Control register using the following 68000 assembler instruction:

Section 4: Local Components

Dynamic RAM

V452 User Guide 4-67

moveb #0x00, 0xFE39 C001 |Enable Level 7 int to CPU-Y

Note Level 7 interrupts can be generated by
multiple sources on V452 Series boards
including the front panel ABORT
switches, the VME SysFail, and ACFail
signals. To determine whether a parity
error was the source of a pending Level 7
interrupt, the interrupt routine can read
b i t 8 in the Status register
(0xFE38 0002). This bit is set to a 1 (or
high) whenever a parity error is detected.

For more information about Level 7 inter-
rupts and interrupt sources, see the
Interrupts chapter in the Board Facilities
section.

To disable the Level 7 parity error interrupt on a single-CPU board or
for CPU-X on a dual-CPU board, either reset the board or perform a
write access to location 0xFE39 4000 in the Interrupt Control register
using the following 68000 assembler instruction:

moveb #0x00, 0xFE39 4000 |Disable Level 7 int to CPU-X

Note The circuitry for the Interrupt Control reg-
ister is designed to decode only the
address portion of write accesses to it.
The data value expressed in the instruc-
tion does not matter.

To disable the Level 7 parity error interrupt for CPU-Y on the dual-CPU
420, either reset the board or perform a write access to location
0xFE39 C000 in the Interrupt Control register using the following
68000 assembler instruction:

moveb #0x00, 0xFE39 C000 |Disable Level 7 int to CPU-X

Note If Level 7 interrupts are left disabled
while parity checking remains enabled,
the board no longer asserts an interrupt
after a parity error but can still detect
parity errors and report them via bit 8 in
the Status register (0xFE38 0002).

Section 4: Local Components

Dynamic RAM

4-68 V452 User Guide

Clearing the parity error bit

As described above, when parity checking is enabled, bit 8 in the Status
register is set to 1 (high). This bit can be cleared to the default 0 (low)
value by either resetting the board or by disabling and then re-enabling
parity checking by executing the following 68000 instructions:

moveb #0x06, 0xFE38 0003 |Disable parity checking
moveb #0x0E, 0xFE38 0003 |Enable parity checking

Note Clearing the parity error bit in the Status
register as described above causes the
Status register to stop indicating a parity
error, but it does NOT in any way clear
the actual bad parity condition at the
faulty memory location. Rather, clearing
the parity error bit in the Status register
restores the ability of the board to
perform parity checking. This ability to
restore parity checking without clearing
the bad parity is very useful in isolating
an individual offending byte responsible
for a parity error after a 16 or 32-bit
access to memory. This isolation
technique is described in more detail in
the next section.

Detecting & isolating bad parity

Odd parity is generated for each byte whenever a write of any size (32
bits, 16 bits, or 8 bits) is performed, that is, the 9th or parity bit is set or
cleared in order to make the number of one's in the 9-bit byte be an
odd number. If the data in each byte becomes corrupted in such a way
as to change the parity value to an even number, the parity protection
circuitry indicates that a memory failure has occurred by writing to the
Status register as described in the preceding paragraphs.

Whenever a read of any length is performed, the CPU fetches an entire
32-bit longword. The parity protection circuitry checks the entire long-
word for a parity. If any of the bytes in the longword have bad parity,
the parity checking circuitry reports a parity error regardless of the
parity status of the individual byte or nibble that was originally
accessed.

When a parity error is encountered, the offending byte can be isolated
by reading and writing each byte in the longword and then rechecking

Section 4: Local Components

Dynamic RAM

V452 User Guide 4-69

the longword for parity. The following procedure can be used after a
parity error has been encountered:

➊ Clear the parity error bit in the Status register — by disabling
and then re-enabling the parity detection as described above.

➋ Disable the 68060’s data and instructions caches (if active).
➌ Disable the Miscellaneous Level 7 interrupts (if active) —

Isolating which byte has the error may require multiple checking
passes. To allow the isolation routine to remain in control
despite the occurrence of a parity error, disable the
Miscellaneous Level 7 interrupt group (of which parity errors is
one of the sources).

Note In addition to parity errors, the maskable
Level 7 interrupt group also includes the
VMEbus SysFail and ACFail signals as
possible interrupt sources. For more
information, see the Interrupts chapter in
Section 3.

➍ Read and Write back individual bytes and recheck the parity of
longword until the error clears — Repeat steps 1 and 4 as
necessary to recheck parity of the longword.

Multi-port memory contention
If another VMEbus and/or EZ-bus daughter module Master attempts to
access on-board memory while the CPU is also executing out of on-
board memory, a priority scheme must be implemented to manage
contention.

On a V452 Series board, the CPU is allowed to complete its memory
cycle first, followed by either the VMEbus or EZ-bus daughter module(s)
depending on which one accessed on-board memory last (i.e. The
VMEbus Master and EZ-bus daughter module(s) exchange memory
access priority on a round-robin basis). The CPU must then wait until
after the VMEbus or daughter module Master(s) relinquishes the local
bus before attempting its next cycle.

This alternation of bus Mastership can potentially reduce the perfor-
mance of the CPU depending on how often such “other Masters”
access the triple-ported on-board memory. The worst case would occur
if the CPU and another Master were alternately executing instructions
or fetching data from on-board memory at the same time, thus forcing
arbitration for the Local bus on every cycle. Of course, memory con-
tention overhead is greatly reduced when the CPU is using its instruc-

Section 4: Local Components

Dynamic RAM

4-70 V452 User Guide

tion and data caches while another Master is accessing on-board
memory.

If a VMEbus Master attempts to access on-board RAM while the CPU is
simultaneously attempting to access the VMEbus, the CPU backs off
and lets the VME Master complete its access. The CPU then retries its
access to the VMEbus. This pause by the CPU is totally transparent to
the software.

Note Whenever an external VMEbus Master,
DMA Controller, or EZ-bus Master writes
to a portion of the V452 Series memory
that is being cached by the on-board
CPU, a cache-to-memory incoherency
condition is possible that could result in a
loss of data. For a discussion of these
cache coherency considerations and a
summary of some useful cache
management techniques, refer to the
approriate CPU chapter in this section
and the applicable Motorola databook.

DRAM address decoding
The paragraphs below describe how the V452 Series board locates a
specific memory address location.

As seen by the 680x0

The on-board DRAM occupies 200,000, 400,000, 800,000, 1,000,000,
2,000,000, 4,000,000 or 8,000,000 hex bytes of address space
corresponding to 2, 4, 8, 16, 32, 64 or 128 MB of DRAM. In the
standard V452 Series configuration, the DRAM is configured to begin at
address 0 as seen by the CPU.

Section 4: Local Components

Dynamic RAM

V452 User Guide 4-71

As seen by an EZ-bus daughter module

Any EZ-bus daughter module that is capable of serving as a bus Master
can be configured to provide either 24-bit or 32-bit Master mode
addressing:

Modules using 24-bit addressing, can see the same DRAM
address map as the CPU. Unlike the CPU, however, modules
that use 24-bit addressing will not be able to access any address
space beyond 16 MB (i.e., V452 Series peripherals, expansion
RAM beyond 16 MB, or VME address space). For most EZ-bus
daughter modules, 24-bit addressing is the standard board
configuration.

Modules using 32-bit addressing use the same address map as
the on-board CPU. The V452 Series boards are also designed to
support a 32-bit EZ-bus daughter module Master. This setting
gives the daughter module the same address map as the CPU.

Note For more information about addressing
modes on EZ-bus modules, see the EZ-
bus Designer’s Guide from Synergy.

As seen by the BLT DMA engine

The Block Transfer DMA engine sees the same address map as the on-
board CPU. For more information, see the VME Master BLT chapter in
Section 5.

As seen by the VMEbus

The VMEbus sees and accesses on-board DRAM through an access
window that is described in the VME Slave interface chapter in Section
5.

Section 4: Local Components

Dynamic RAM

4-72 V452 User Guide

R452/R453 memory modules
All V452 Series boards supply local memory on a modular R452/R453
daughter card that plugs onto the P9, P10 and P11 connectors on the
main board. Separate modules are available containing 4, 8, 16, 32, 64
and 128 MB of DRAM. This modular design provides an easy way to
change the amount of on-board memory without taking the board out
of service and returning it to the factory for rework.

Depending on the current use of the board as a Slave in a larger
VMEbus system, some software configuration changes may be required
to prepare the board for active use.

For a procedure that describes how to install or replace R452/R453
modules on V452 Series boards, see the Installing the R452/R453
memory module in Section 2.

Section 4: Local Components

EPROM

V452 User Guide 4-73

EPROM

V452 Series boards provide two 32-pin sockets (.6 inches wide) at
UG13 (EPROM1) and UJ13 (EPROM0) for one or two of the following
types of JEDEC-standard byte-wide EPROM memories† :

27C010 1 Mbit EPROM

27C020 2 Mbit EPROM

27C040 4 Mbit EPROM

27C080 8 Mbit EPROM

28F010 1 Mbit Flash EPROM (128K x 8)

28F020 2 Mbit Flash EPROM (256K x 8)

The V452 Series PROM socket circuitry provides the following features
and capabilities:

primary interface for monitor firmware.

an 8-bit data path to the CPU that minimizes the number of
EPROMs and power usage.

up to 2 MB of 8-bit wide EPROM memory space when the
largest supported EPROM type (2 ea. 27C080) is used.
up to 512 KB of 8-bit wide Flash EPROM memory space when
the largest supported Flash EPROM type (2 ea. 28F020) is used.
allows combination of one EPROM and one Flash EPROM
device on the same board.

The figure below shows the location of the two EPROM sockets and
jumpers on V452 Series boards.

† TI brand EPROMs cannot be used. Their requirement for Vcc on unused pins prevents a TI PROM from being used in a general
purpose socket. EPROMs from other manufacturers such as Intel, AMD, etc. work without problem.

Section 4: Local Components

EPROM

4-74 V452 User Guide

V452
Component

side

P1P2

P3 (EZ-bus module connector)

P4 (EZ-bus module connector)

CPU-X

CPU-Y
(Optional)

P5 P6 P7 P8

Empty Monitor
Socket

EPROM1
(CPU-Y)

Empty Monitor
Socket

EPROM0
(CPU-X)

P9 P10

P11

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

JK12 JK17

UG13 socket

UJ13 socket

V452 Series jumper and socket locations for EPROM configuration

Selecting the monitor EPROM type
The type of EPROM (i.e., Flash or normal EPROM) installed on V452
Series boards must be indicated by configuring jumper JK12 as shown
in the figure on the following page.

For proper operation, all V452 Series boards must include an EPROM at
the PROM socket 0 position. The PROM 1 socket is required only on
dual-CPU models or to contain additional firmware for single-CPU
model boards.

Note Unless specifically ordered otherwise, all
V452 Series boards are supplied with the
required EPROM and JK12 jumper
settings. For more information about in-
stalling customized firmware, contact
Synergy.

Section 4: Local Components

EPROM

V452 User Guide 4-75

JK12
PROM 0
Control

Flash
 EPROM
Installed

Normal
EPROM
Installed

Flash
EPROM
Installed

Normal
EPROM
Installed

PROM 1
Control

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

JK12 — EPROM type selection

Flash EPROM configuration
The PROM circuitry on V452 Series boards include all of the required
lines and signals to allow on-board reprogramming of Flash EPROM
devices.

Note For more information about the software
aspects of writing to Flash EPROM de-
vices, see the chapter containing Flash
EPROM programming tools in the Code
Examples section and the 28F010 1 Mbit
Flash EPROM data sheet in the Datasheet
Supplement that contains reprinted por-
tions of the manufacturer’s datasheets for
devices used on V452 Series and other
boards from Synergy.

In addition to the software instructions and signals that must be
asserted to enable writes to installed Flash EPROM devices, V452 Series
boards also require a jumper setting as well. The figure below shows the
jumper JK17 settings to enable or disable writing to the Flash device
installed in the EPROM sockets.

Section 4: Local Components

EPROM

4-76 V452 User Guide

1 2

3 4Flash Write Enable/Disable
Enable
Disable

JK17 — Flash EPROM Write enable/disable

Note The EPROM circuitry reads this jumper
only if Flash EPROM has been selected
using jumper JK12. If Flash EPROM is not
selected for either PROM, the setting for
jumper JK17 does not matter.

EPROM use
V452 boards provide two EPROM sockets for the storage of boot and
other firmware for the on-board CPU(s). With the board configured to
boot from EPROM (EPROM boot enable jumper installed on JK17 pins
17 & 18), a V452 power cycle or reset will cause the CPU(s) to fetch its
start-up vector on:

Single-CPU models — EPROM0 (0xFE000000). This start-up
vector can point to any location on either EPROM.

Dual-CPU models — EPROM0 (0xFE000000) for CPU-X and
EPROM1 (FD000000 or FE400000) for CPU-Y.

The start-up vector can point to any location in EPROM0 or
EPROM1 (old or new space), that is, any address from
FE000000–FE0FFFFF or FD000000–FDFFFFFF (new EPROM1
space) or FE400000–FE4FFFFF (old EPROM1 space). Refer to the
Address Map chapter in Section 3 and this section’s Flash
memory module chapter for more information on the EPROM1
address space.

Section 4: Local Components

EPROM

V452 User Guide 4-77

Flash considerations
When Flash Write is enabled — Your application code must contain
safeguards when Flash Write is enabled to avoid inadvertent writing of
Flash memory which may render the processor(s) inoperative. In
particular, CPU-Y will not boot after a reset if the reset vectors have
been overwritten.

If Flash memory is to be long-term, read-
only, set the JK17 Flash Write
enable/disable jumper to the disable
position to avoid accidental writing of
Flash memory.

When programming Flash on a dual-CPU board — On a dual-CPU
board, CPU-Y might interfere with attempts to reprogram the Flash by
attempting to boot itself. In this case, your programming code must first
prevent CPU-Y from making EPROM1 accesses. This is done with the
EPROM1 programming bits provided in the extended control register
(FE3A0006-7). The basic procedure is:

1. Write to FE3A0007. Setting this bit prevents CPU-Y from
accessing EPROM1.

2. Program the Flash. At this point, CPU-X can program the Flash
unhampered.

3. After programming, restart the dual-CPU board to resume
normal operation. After restart, CPU-Y defaults to normal access
of EPROM1 (FE3A0006 = 1).

For more information on the V452 control registers, refer to the V452
internal registers chapter in Section 3.

Section 4: Local Components

EPROM

4-78 V452 User Guide

Section 4: Local Components

Flash memory module

V452 User Guide 4-79

Flash memory module

As described in the preceding chapter, the V452 Series EPROM0 and
EPROM1 sockets each support 28F010 or 28F020 Flash EPROMs
which have a capacity of 128KB or 256KB respectively. If more Flash
memory capacity is desired, optional Flash memory modules provide up
to 4 MB or 16 MB respectively.

This option differs from the Flash EPROM option in that the Flash
memory modules are based on Intel’s FlashFile™ memory chips. These
chips have a byte write and block erase architecture with data storage
similar to that of a sectored hard disk. The Flash module, thus, lets the
SBC load an operating system or execute a large program locally for
operation as a diskless or standalone (non-networked) unit. Listed
below are the available Flash module types.

DEFL: 2 or 4 MB of Flash memory

DELF: 4, 8, or 16 MB of Flash memory

A Flash module replaces EPROM1. It is plugged into the motherboard’s
EPROM0 and EPROM1 sockets and an auxiliary socket strip. EPROM0
is still used, but it is plugged piggyback-fashion onto the top of the Flash
module.

Flash memory address location

Address Data width Description
FD00 0000 – FDFF FFFF D8 Flash module/EPROM1 read/write*

* NOTE: This address space is also recommended for EPROM1 for newer motherboards without
the Flash module option. The old EPROM1 space FE400000–FE4FFFFF, however, is
available for EPROM1 or regular Flash EPROM if necessary. See Accessing the Flash
module below for more information.

Section 4: Local Components

Flash memory module

4-80 V452 User Guide

Note Because the Flash module takes over the
function of EPROM1, you must program
the Flash module with the reset vector for
CPU-Y (applies to dual-CPU boards only).

The drawing below summarizes the Flash memory module.

DELF
4 MB: 2 ea. 28F016 (on top)
8 MB: 2 ea. 28F032 (on top)
16 MB: 4 ea. 28F032 (2 on top and 2 on bottom)

This pin row (bottom) plugs into
 CPU PJ13 socket *

This pin row (bottom) plugs into
CPU EPROM1 socket (one row only)

DEFL
2 MB: 2 ea. 28F008 (on top)
4 MB: 4 ea. 28F008 (2 on top and 2 on bottom)

28F016
or

28F032

* NOTE: DELF/DEFL compatible with these CPUs only:
V440 rev. G or higher
V460 rev. A or higher
V451, rev. A or higher
V452, rev. A or higher

28F008 (inside outline)

Pins (bottom) plug into
CPU EPROM0 socket.
Pin sockets (top) accept
EPROM0 (orient notch or dot
end to pin 1 mark as shown).Pin 1

Flash Memory Module Types:

Flash memory module (Top View)

Installing the Flash module option
Follow these steps to install the Flash module:

1. Remove EPROM0 and EPROM1 (if present) from motherboard.
EPROM1 will no longer be used since the Flash module will contain the
reset vectors for CPU-Y (if applicable).

2. Plug Flash module into motherboard sockets as shown in drawing
below. Note orientation of Flash chips towards CPU chip(s). Make sure
that all pins are properly engaged before fully seating module.

3. Plug EPROM0 into pin sockets on top of Flash module. Orient
EPROM’s notch or dot end to pin 1 socket as shown in drawing below.

Section 4: Local Components

Flash memory module

V452 User Guide 4-81

4. Set appropriate EPROM configuration jumpers. For JK12 (PROM
control), set EPROM1 jumpers to Flash and EPROM0 jumpers to
Normal or Flash depending on the type of EPROM0 device installed on
Flash module. For JK17 (Flash Write enable/disable) set the jumper to
the Write position if it is desired to write to Flash. Refer to the EPROM
chapter in Section 4 for more information on the EPROM jumpers.

Flash Module plugs
into these pin sockets

EPROM0

Flash Module

EPROM0 plugs into
these pin sockets

Towards CPU Chip(s)

Towards VME backplane connectors

Notch

Flash chips

CPU Board, PROM Socket area

Pin 1

Pin 1

Installing the Flash module

Section 4: Local Components

Flash memory module

4-82 V452 User Guide

Accessing the Flash module
All Flash module varieties are accessed in the address range
FD000000–FDFFFFFF. This provides a 16 MB space. This address range
is also the recommended space for EPROM1 on newer Synergy
motherboards (includes V440 rev. G or higher and V460 rev. A or
higher).

For backwards compatibility, EPROM1 and regular Flash EPROM (not
the Flash module) can be accessed by code using the old EPROM1
space used by earlier Synergy motherboards. This space is the address
range FE400000–FE4FFFFF.

For detailed information on programming the Flash module devices,
refer to Intel’s “28F016SA 16-Mbit FlashFile™ Memory User’s Manual,”
Order Number 297372-001.

Use byte accesses with data cache
disabled, for programming, and program
verification. Do not use word or
longword accesses.

Also note that the Flash module’s byte-
write program should have a timeout of
>3 milliseconds. The Flash device
programming time is variable. For more
information, contact Intel:

1-800-628-8686

Block organization

For convenience in programming or erasing, the block information for
the various Flash memory modules is listed in the table below.

Flash memory module block information

Product/Mem. Size Total Blocks Block Size Block Numbers
DELF/4MB 64 64KB 0-63
DELF/8MB 128 64KB 0-127

DELF/16MB 256 64KB 0-255
DEFL/2MB 32 64KB 0-31
DEFL/4MB 64 64KB 0-63

Section 4: Local Components

Flash memory module

V452 User Guide 4-83

Flash considerations
When Flash Write is enabled — Your application code must contain
safeguards when Flash Write is enabled to avoid inadvertent writing of
Flash memory which may render the processor(s) inoperative. In
particular, CPU-Y will not boot after a reset if the reset vectors have
been overwritten.

If Flash memory is to be long-term, read-
only, set the JK17 Flash Write
enable/disable jumper to the disable
position to avoid accidental writing of
Flash memory.

When programming Flash on a dual-CPU board — On a dual-CPU
board, CPU-Y might interfere with attempts to reprogram the Flash by
attempting to boot itself. In this case, your programming code must first
prevent CPU-Y from making EPROM1 accesses. This is done with the
EPROM1 programming bits provided in the extended control register
(FE3A0006-7). The basic procedure is:

1. Write to FE3A0007. Setting this bit prevents CPU-Y from
accessing EPROM1.

2. Program the Flash. At this point, CPU-X can program the Flash
unhampered.

3. After programming, restart the dual-CPU board to resume
normal operation. After restart, CPU-Y defaults to normal access
of EPROM1 (FE3A0006 = 1).

For more information on the V452 control registers, refer to the V452
internal registers chapter in Section 3.

Section 4: Local Components

Flash memory module

4-84 V452 User Guide

Section 4: Local Components

Onboard Flash memory

V452 User Guide 4-85

Onboard Flash memory

Introduction
V452 boards provide 2/4/8MB of onboard Flash memory as an option.
The memory chips have a byte write and block erase architecture with
data storage similar to that of a sectored hard disk. The onboard Flash
option lets the SBC load an operating system from local Flash for
operation as a diskless or standalone (non-networked) unit.

Onboard Flash memory address location

Address Data width Description
FC00 0000 – FC7F FFFF D32 Onboard Flash memory space

Flash memory is made up of 4 ea. 8-bit flash memory chips. These
devices are connected so that they appear as one 32-bit device. The
table below lists the device used for each size of onboard Flash.

Onboard Flash devices

Onboard Flash size Manufacturer1 Part Number1 Organization
2MB AMD 29F016 2Mb x 8
4MB Intel 28F008 1Mb x 8
8MB AMD 29F040 512Kb x 8

Note: 1. Equivalent parts may be used; therefore, actual manufacturer and part number may
differ from the listing.

Section 4: Local Components

Onboard Flash memory

4-86 V452 User Guide

Writing and erasing
The onboard Flash is always write-enabled. Take special care when
using the onboard Flash to avoid overwriting data.

Note The Flash write enable/disable jumper
(JK17) applies to Flash installed in the
EPROM sockets only.

Writing to onboard Flash may fail if JK12
is configured improperly.

The Flash memory chips have embedded byte write and block/sector
erase algorithms. For more information on the chip itself and on the
software aspects of writing/erasing Flash memory, refer to the
applicable manufacturer’s (AMD or Intel) Flash memory databook.

Flash Memory (2-volume set), Intel
For ordering information, contact:

Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

In U.S. and Canada, call toll free: (800) 548-4725

Flash Memory Products Data Book/Handbook, AMD
For ordering information, contact:

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA 94088-3453

In U.S. and Canada, call toll free: (800) 222-9323

Block organization

For convenience in programming or erasing, the block information for
the onboard Flash memory is listed in the table below.

Flash memory module block information

Flash Memory Size Total Blocks Block Size Block Numbers
2MB 8 256KB 0-7
4MB 16 256KB 0-15
8MB 32 256KB 0-31

Section 4: Local Components

Onboard Flash memory

V452 User Guide 4-87

Note that Flash support and example driver code is supplied in
Synergy’s SMon Application Developer and Debugger package.
Contact Synergy for details.

Booting from onboard Flash
The V452 can be configured to boot from onboard Flash via the Flash
boot enable jumper at JK17 pins 17 & 18. Refer to the Jumpers,
switches, LEDs & fuses chapter in Section 3 for more information on
configuration jumpers.

To boot from onboard Flash, program the Flash memory with the reset
vector and boot code, then install the Flash boot enable jumper on
JK17 pins 17 & 18. With this jumper installed, a power cycle or local
reset will cause the CPU to look for its reset vector at the base of
onboard Flash (FC000000) instead of the EPROM. Refer to the Default
& reset conditions chapter in Section 3 for more information about the
boot state and start-up vectors.

Section 4: Local Components

Onboard Flash memory

4-88 V452 User Guide

Section 4: Local Components

Timers & counters

V452 User Guide 4-89

Timers & counters

V452 Series boards provide a total of five timers/counters as follows:

A 16-bit timer/counter is provided on each of the two 2692
DUART chips on V452 Series boards. Each of these timers can
assert a Level 6 interrupt.

Three additional timer/counters typically used for counter appli-
cations are provided by the 82C54 counter chip. Two of the
three counters can assert Level 2 interrupts.

Note For more information about these de-
vices, see the 2692 DUART and 82C54
counter data sheets in the Datasheet
Supplement containing reprinted por-
tions of the manufacturer’s data sheets.

The 2692 timers and 82C54 counters remain synchronized to support
cascade-type applications.

Section 4: Local Components

Timers & counters

4-90 V452 User Guide

Feature comparison
The timer/counters on the 2692 and 85C54 provide a slightly different
set of features. The unique differences are explained below.

2692 timers and support circuitry:

Both 2692 timers include a prescaler

The 2692 counter/timer can be read on the fly, but only in the
counter mode. Some means must be provided to protect against
a carry from bit 7 to bit 8 during the reading of the upper and
lower bytes of the 16-bit counter. The preferred method is to
stop the counter, read the value and then to restart the counter.
Other methods involving multiple reads can be used as
protection against this carry over situation. Note that in the timer
mode, the running count cannot be read under any
circumstance.

82C54 counters and support circuitry:

All three 82C54 counters support on-the-fly counter reading.

Note The timer/counters on the 2692 and
82C54 chips can be configured to oper-
ate as either timers or counters.
However, due to the characteristics of
the chips themselves, as described
above, and the interrupt levels assigned
to them on V452 Series boards, the
timer/ counters on the 2692 are typically
used for timer functions; whereas those
on the 82C54 are typically used for
counter functions. For the sake of clarity,
therefore, all references in this chapter to
timers refer to the 2692; whereas refer-
ences to counters refer to the 82C54.

Section 4: Local Components

Timers & counters

V452 User Guide 4-91

16-bit timers (2692)
Each of the two 2692 DUARTs on the main board contains a 16-bit
timer register that can be used for general-purpose timing applications.

Timer CT-A resides on the DUART controlling serial channels A
and B.
Timer CT-C resides on the DUART controlling serial channels C
and D.

The table below summarizes the address map locations for the registers
on the 2692 chip that control timer/counter functions.

Timer-related registers on 2692 UARTs

Register Address Timer Read function Write function

1 FE280007 CT-A — Clock select register
4 FE280013 CT-A — Aux. Control register
6 FE28001B CT-A CT upper 8 bits CT upper 8 bits
7 FE28001F CT-A CT lower 8 bits CT lower 8 bits
9 FE280027 CT-A — Clock select register
14 FE28003B CT-A Start counter Set Output
15 FE28003F CT-A Stop counter CT-A* Reset Output

1 FE200007 CT-C — Clock select register
4 FE200013 CT-C — Aux. Control register
6 FE20001B CT-C CT upper 8 bits CT upper 8 bits
7 FE20001F CT-C CT lower 8 bits CT lower 8 bits
9 FE200027 CT-C — Clock select register
14 FE20003B CT-C Start counter Set Output
15 FE20003F CT-C Stop counter CT-C* Reset Output

Notes: * When operating in timer mode, the 2692’s timer/counters cannot be stopped; only when
in counter mode can they be turned on and off.

Note For more information about the other
registers and serial functions for the 2692
chip, see the Asynchronous serial inter-
face chapter in Section 5.

Section 4: Local Components

Timers & counters

4-92 V452 User Guide

Selecting the timer mode and source

Bits 4-6 of the Auxiliary Control (ACR) register for each 2692 chip (see
register 4 in the table on the previous page) selects either counter or
timer mode and which source the 2692 is to count or time.

The table below lists the appropriate value to select each mode/source.

Timer mode and source selection

ACR register values
Bits 4,5,6

Mode Clock source

0 0 0 Counter External (IP2)
0 0 1 Counter TXCA - 1X clock of serial channel A
0 1 0 Counter TXCB - 1X clock of channel B
0 1 1 Counter Crystal or ext. clock/16
1 0 0 Timer External (IP2)
1 0 1 Timer External (IP2)/16
1 1 0 Timer Crystal or ext. clock
1 1 1 Timer Crystal or ext. clock/16.

Performing timer operations

The paragraphs below describe how to perform some basic counter/
timer operations:

Start counter/timer A by performing a byte read from register
0xFE28003B. Stop A (in Counter mode only) by performing a
byte read from register 0xFE28003F.
Start and stop counter/timer C in the same manner using regis-
ter locations 0xFE20003B and 0xFE20003F respectively.
Access the counter or timer value by performing two 8-bit reads
or writes to register 6 (CT upper) and 7 (CT lower) for the
desired DUART as listed in the table of 2692 register addresses
appearing earlier in this chapter.

Section 4: Local Components

Timers & counters

V452 User Guide 4-93

Enabling the timers as interrupt sources

The two 2692 timers are steerable interrupt sources which has different
implications for single and dual-CPU V452 Series model boards:

Single-CPU boards can use one timer as an independent inter-
rupt source. (Using both timers as interrupt sources at the same
interrupt level, is not recommended.)

On Dual-CPU boards each timer can be assigned to serve as an
interrupt source to either CPU but should be assigned to only
one CPU at the same time.

Interrupt Control register configuration — Enabling the 2692 timers as
interrupt sources is a two step process. The first step is to configure the
Interrupt Control registers on the V452 Series board as described
below:

To enable Timer A as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE390005 |Enable CT-A to CPU-X

To enable Timer C as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE390007 |Enable CT-C to CPU-X

To enable Timer A as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE398005 |Enable CT-A to CPU-Y

To enable Timer C as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE398007 |Enable CT-C to CPU-Y

Section 4: Local Components

Timers & counters

4-94 V452 User Guide

Configuring timer interrupt level — The second step in enabling the
2692 timers is to configure the Output Configuration register on the
2692 chips themselves as described below:

The timer on each of the 2692 chips can be configured to assert an
interrupt either at the same level as the serial interface (Level 5) or at its
own level (Level 6) as follows.

To enable the 2692 timers to assert a separate Level 6 interrupt, exe-
cute the following 680x0 assembler instructions:

moveb #04, 0xFE280037 |Enable CT-A as Level 6 int.
moveb #04, 0xFE200037 |Enable CT-C as Level 6 int.

Writing any other value to these two bits causes the timer on the 2692
timer to assert a Level 5 interrupt.

Disabling the timers as interrupt sources

The timers can be disabled as interrupt sources by writing to the
Interrupt Control registers as described below:

To disable Timer A as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE390004 |Disable CT-A to CPU-X

To disable Timer C as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE390006 |Disable CT-C to CPU-X

To disable Timer A as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE398004 |Disable CT-A to CPU-Y

To disable Timer C as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE398006 |Disable CT-C to CPU-Y

Section 4: Local Components

Timers & counters

V452 User Guide 4-95

Timer interrupt service routine

To acknowledge a timer interrupt, toggle off and on the appropriate
timer in the Interrupt Control register as described below.

To clear an interrupt from Timer A on single-CPU boards or to CPU-X
on a dual-CPU board, execute the following 68000 assembler instruc-
tions:

moveb #00, 0xFE390004 |Disable CT-A to CPU-X
moveb #00, 0xFE390005 |Re-enable CT-A to CPU-X

To clear an interrupt from Timer C on single-CPU boards or to CPU-X
on a dual-CPU board, execute the following 68000 assembler instruc-
tions:

moveb #00, 0xFE390006 |Disable CT-C to CPU-X
moveb #00, 0xFE390007 |Re-enable CT-C to CPU-X

To clear an interrupt from Timer A to CPU-Y on a dual-CPU boards,
execute the following 68000 assembler instructions:

moveb #00, 0xFE398004 |Disable CT-A to CPU-Y
moveb #00, 0xFE398005 |Re-enable CT-A to CPU-Y

To clear an interrupt from Timer C to CPU-Y on a dual-CPU boards,
execute the following 68000 assembler instructions:

moveb #00, 0xFE398006 |Disable CT-C to CPU-Y
moveb #00, 0xFE398007 |Re-enable CT-C to CPU-Y

Section 4: Local Components

Timers & counters

4-96 V452 User Guide

16-bit counters (82C54)
The 82C54 counter on V452 Series boards provide three 16-bit counter
registers for general-purpose timing applications.

If enabled, Counter 0 and Counter 1 can be programmed to
assert a Level 2 interrupt.
Counter 2 cannot assert an interrupt.

Each counter can operate independently in one of six operational
modes to serve as event counters, elapsed time indicators, pro-
grammable one-shots, or other similar applications.

The address map location for the registers on the 82C54 are listed in
the table below:

82C54 counter registers

Counter/ Register Address
Counter 0 FE2A 0003
Counter 1 FE2A 0007
Counter 2 FE2A 000B

Control Word register FE2A 000F

Selecting the counter mode and source

The 82C54 counters are programmed/started in two basic steps:

➊ Writing a 8-bit control word to the Control Word register.
➋ Writing the initial count into the counter itself.

The control word selects the counter and operational mode:

Bits 7 and 6 select the Counter to be used (0, 1, or 2) to be con-
figured or selects the read back command for reading the con-
tents of a counter.

Bits 5 and 4 select a read/write operation to be performed.

Section 4: Local Components

Timers & counters

V452 User Guide 4-97

Bits 3, 2, and 1 can select one of six operational modes.
However, on V452 Series boards only the following three modes
are useable:

• Mode 0 — Interrupt on terminal count; this mode can
only be used as a 1 microsecond free-running counter.
To use the counter in this manner without generating
spurious interrupts, the counter interrupt must be
enabled).

• Mode 2 — Rate generator
• Mode 4 — Software-triggered strobe

Note Because V452 Series boards auto-
matically generate an interrupt in
response to a low-going pulse from the
counters, only the modes listed above
can be used. Attempting to use any of
the other modes, while the counter is
serving as an interrupt source can result
in spurious interrupts. For more
information about counter modes, see
the 82C54 counter datasheet in the
Datasheet Supplement.

Bit 0 selects either binary or Binary Coded Decimal (BCD) as the
output format for the counter.

Note For more information about program-
ming the 82C54 see the 82C54 counter
data sheet in the Datasheet Supplement.

Enabling the counters as interrupt sources

The two counters on the 82C54 that can assert interrupts are non-
steerable interrupt sources. This fact has different implications for single
and dual-CPU V452 Series model boards:

Single-CPU boards can use all three counters but only one as an
interrupt source (Counter 0).

On dual-CPU boards, each of the two interrupt driven counters
can serve as an interrupt source only for the CPU to which they
are assigned (i.e., CPU-X to Counter 0; CPU-Y to Counter 1).

To enable Counter0 as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

Section 4: Local Components

Timers & counters

4-98 V452 User Guide

moveb #00, 0xFE39000F |Enable Counter0 to CPU-X

To enable Counter1 as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800F |Enable Counter1 to CPU-Y

Disabling the counters as interrupt sources

The counters can be disabled as interrupt sources by writing to the
Interrupt Control registers as described below:

To disable Counter0 as an interrupt source on single-CPU boards or to
CPU-X on a dual-CPU board, execute the following 68000 assembler
instruction:

moveb #00, 0xFE39000E |Disable Counter0 to CPU-X

To disable Counter1 as an interrupt source to CPU-Y on a dual-CPU
boards, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800E |Disable Counter1 to CPU-Y

Clearing counter interrupts

To acknowledge a counter interrupt, toggle off and on the appropriate
counter interrupt in the Interrupt Control registers as described below:

To clear an interrupt from Counter0 on single-CPU boards or to CPU-Y
on a dual-CPU board, execute the following 68000 assembler
instructions:

moveb #00, 0xFE39000E |Disable Counter0 to CPU-X
moveb #00, 0xFE39000F |Re-enable Counter0 - CPU-X

To clear an interrupt from Counter1 to CPU-Y on a dual-CPU board,
execute the following 68000 assembler instructions:

moveb #00, 0xFE39800E |Disable Counter1 to CPU-Y
moveb #00, 0xFE39800F |Re-enable Counter1 - CPU-Y

Section 4: Local Components

Timers & counters

V452 User Guide 4-99

Using Counter 2 as a BLT Throttle

While BLT DMA transfers are in progress, the V452 Series boards
normally yield the entire local bus bandwidth to service the transfer. For
transfers being controlled by an on-board CPU, this approach provides
the fastest possible BLT DMA transfer rates without significantly
compromising the CPU because it is busy managing the transfer and
can effectively execute out of its own internal caches.

However, the V452 Series boards can also provide a special feature,
using Counter 2 of the 82C54, to allow the on-board CPU(s) to perform
local bus operations while an external processor performs BLT DMA
transfers at the same time.

Such a concurrent processing arrangement can be achieved using the
V452 Series board and an EZ-bus module that contains its own
processor or intelligent DMA chip which can be programmed to oper-
ate the motherboard’s BLT DMA engine.

Without some way to limit or throttle the bandwidth usage of the BLT
transfer, however, having the intelligent EZ-bus module manage BLT
DMA transfers on the V452 Series board might lock the on-board
CPU(s) off its own local bus. Counter 2 of the 82C54 (whose count is
available to the intelligent daughter module via pin D7 (CntC\) on the
P4 EZ-bus connector) provides a local bandwidth throttle as described
below.

Whenever a BLT DMA is in progress, circuitry on the V452 Series board
gates off or freezes Counter 2. As soon as an individual transfer ends,
this circuitry frees Counter 2 to start counting. By programming the
intelligent EZ-bus module to pause for a certain number of counts
before starting the next BLT transfer, Counter 2 can open a variable-
length, bandwidth window for local bus operations by the on-board
CPU(s) while the EZ-bus module performs BLT DMA transfers.

Note The BLT throttling features of Counter 2
cause it to operate in a non-continuous
fashion whenever BLT DMA transfers are
in use. If you need continuous counting
operations lasting more than the duration
of a single BLT DMA transfer, consider
using another 82C54 counter or one of
the 2692 timers.

Section 4: Local Components

Timers & counters

4-100 V452 User Guide

Section 4: Local Components

Clock calendar

V452 User Guide 4-101

Clock calendar

The V452 Series provide clock/calendar data including the year, month,
date, day, hour, minutes, and seconds data in 24-hour BCD format from
a SGS-Thomson M48T18 Timekeeper RAM chip. The clock calendar is
backed-up by a user-replaceable battery that should last for several
years.

Note For more information about this device
see the M48T18 Timekeeper RAM data
sheet in the Datasheet Supplement that
contains reprinted portions of the manu-
facturer’s datasheets for devices used on
V452 Series and other boards from
Synergy. This data sheet includes a series
of formulas and curves for estimating the
active life of the M48T18 chip’s Snaphat
battery.

The M48T18 also has its own Power-fail Detect circuit. The circuit dese-
lects the device whenever Vcc is out of range, providing a high degree
of data security during power-up and power-down times.

The V452 Series clock/calendar/NVRAM provides either 2K bytes or 8K
bytes of storage. The 2K mode is provided for backwards compatibility
to preserve the location of the clock/cal register set at FE10 07F8-FE10
07FF.

If your software requires compatibility with the V400 or V440 Series,
then do not set the 8K mode bit. If backwards compatibility is not
required, then it is recomended to set the 8K mode bit immediately on
booting (before the NVRAM or clock/calendar are used).

Section 4: Local Components

Clock calendar

4-102 V452 User Guide

To set the NVRAM to 8K mode, write a byte of data (value
unimportant) to FE38 C00D. Doing so will also shift the data that was
stored in the NVRAM from FE10 0000-FE10 07F7 up to the address
range FE10 1800-FE10 1F7F.

To revert to 2K compatibility mode, write a byte of data (value
unimportant) to FE38 C00C.

FE38 C00C selects 2K mode (default)

FE38 C00D selects 8K mode

Clock address locations
The M48T18 Clock/SRAM is an 8-bit peripheral. Each M48T18 memory
location must be accessed on successive byte boundaries as illustrated
in the table below.

Clock/calendar registers

Register
address

Data bits 0-7 Range

b7 b6 b5 b4 b3 b2 b1 b0
FE10 1FFF -- -- -- -- -- -- -- -- Year 00-99
FE10 1FFE 0 0 0 -- -- -- -- -- Month 00-12
FE10 1FFD 0 0 -- -- -- -- -- -- Date 00-31
FE10 1FFC 0 FT 0 0 0 -- -- -- Day 00-07
FE10 1FFB 0 0 -- -- -- -- -- -- Hour 00-23
FE10 1FFA 0 -- -- -- -- -- -- -- Minutes 00-59
FE10 1FF9 ST -- -- -- -- -- -- -- Seconds 00-59
FE10 1FF8 W R s c c c c c Control

Notes: R = Read Bit ST = Stop Bit
W = Write Bit FT = Freq. Test Bit
ccccc=calibration bits s = sign bit

Accessing clock data
Access to the clock is as simple as conventional byte-wide RAM access
because the RAM and the clock are combined on the same die. The
Timekeeper registers are located in the upper eight locations of the
RAM as listed in the above table.

These registers contain, beginning from the top: year, month, date, day,
hour, minutes, and seconds data in 24-hour BCD format. Corrections
for leap year and the number of days in the month are made automati-
cally. The eighth location is the Control register. These registers are not

Section 4: Local Components

Clock calendar

V452 User Guide 4-103

the actual clock counters, but BiPort read/write static RAM memory
locations. The 48T02 includes a clock control circuit that, once a sec-
ond, dumps the counters into the BiPort RAM.

Clock operations
Updates to the Timekeeper registers should be temporarily suspended
before clock data is read to prevent reading of data in transition.
Because the BiPort Timekeeper cells in the RAM array are only data
registers and not the actual counters, updating the registers can be
suspended without disturbing the clock itself.

Updating the data registers is suspended when a 1 is written into the
Read bit, the seventh most significant bit in the Control register. As long
as a 1 remains in that position, data register updates are suspended.
After the Read bit is set, the registers reflect the count, i.e., the day,
date, and time that were current at the moment the Read command
was issued. All of the Timekeeper registers are updated simultaneously.
The Read command will not interrupt an update in progress. Registers
are again updated in a normal fashion within a second after the Read
bit is reset to a 0.

Setting the clock — The eighth bit of the Control register is the Write
bit. Setting the Write bit to a 1, like the Read bit, suspends updates to
the Timekeeper registers. The user can then load them with the correct
day, date, and time data in 24-hour BCD format.

Resetting the Write bit to a 0 transfers those values into the actual
Timekeeper counters and allows normal operation to resume. The FT
bit, as well as the bits marked with zeros in the above table, must be
written with zeros to allow normal Timekeeper and RAM operation.

Stopping and starting the oscillator — The oscillator may be stopped at
any time. If the CPU board is going to spend a significant amount of
time on the shelf, the oscillator can be turned off to minimize current
drain from the battery. The STOP bit is the MSB of the Seconds register.
Setting it to a "1" stops the oscillator.

To start the oscillator, implement the following procedure.

➊ Set the Write bit to "1".
➋ Reset the Stop bit to "0".
➌ Reset the Write bit to "0".
➍ Wait two seconds.

Section 4: Local Components

Clock calendar

4-104 V452 User Guide

➎ Set the Write bit to "1".
➏ Set the correct time and date.
➐ Reset the Write bit to "0".

Calibrating the clock speed — The low-order 5 bits of the control regis-
ter (ccccc in the table above) represent any value between 0 and 31 in
binary form. The sixth bit is a sign bit (the s bit in the table above)
where:

S=1 indicates a positive calibration and speeds up the oscillator.
S=0 indicates a negative calibration and slows down the oscilla-
tor.

Calibration corrections are applied within a 64 minute cycle. The first
62 minutes in each 64 minute cycle may, once per minute, have one
second either shortened or lengthened by:

128/32768 seconds (3.906 ms)

If a binary 1 is loaded into the ccccc bits, only the first 2 minutes in the
64 minute cycle will be modified; if a binary 6 is loaded, the first 12
minutes of the 64 minute cycle will be affected, and so on. If the oscilla-
tor is running precisely at its nominal frequency (32768 Hz), each of the
31 increments in the calibration bits represents 5.35 seconds per
(average) month, or, more precisely, 175.78 ms per day. This affords a
total calibration range of about 5.4 seconds per day.

The simplest and most accurate method to calibrate the clock:

➊ Synchronize the clock to an accurate timing source such as a
GPS receiver or WWV radio transmissions from the National
Bureau of Standards in Fort Collins Colorado (available at 5,000
kHz, 10,000 kHz, and 15,000 kHz on the AM band).

➋ Accumulate an error for a few weeks or months if necessary.
➌ Compare the clock to the original source.

This procedure yields an accurate correction. Even a manual compari-
son, which has an error of a second or more, is sufficient to adjust the
clock to within a single count of the calibration register.

Timer code example
See the Code examples in Section 6 for an example of how to set and
use the M48T18 calendar chip.

Section 4: Local Components

Non-volatile 8K x 8 SRAM

V452 User Guide 4-105

Non-volatile 8K x 8 SRAM

Each SRAM location must be accessed on successive byte-aligned
boundaries in the address range shown in the table below:

Non-volatile SRAM address location

Address Data width Description
FE1F E000 – FE1F FFF7 D8 8K bytes of battery-backed SRAM

Note Because the registers on the 48T18 are
constructed using BiPort memory cells,
access to the SRAM portion of the chip
proceeds unhindered by updates to the
clock calendar registers, even if these
registers are being updated simultane-
ously with an SRAM access.

The V452 Series clock/calendar/NVRAM provides either 2K bytes or 8K
bytes of storage. The 2K mode is provided for backwards compatibility
to preserve the location of the clock/cal register set at FE10 07F8-FE10
07FF.

If your software requires compatibility with the V400 or V440 Series,
then do not set the 8K mode bit. If backwards compatibility is not
required, then it is recomended to set the 8K mode bit immediately on
booting (before the NVRAM or clock/calendar are used).

To set the NVRAM to 8K mode, write a byte of data (value
unimportant) to FE38 C00D. Doing so will also shift the data that was
stored in the NVRAM from FE10 0000-FE10 07F7 up to the address
range FE10 1800-FE10 1F7F.

Section 4: Local Components

Non-volatile 8K x 8 SRAM

4-106 V452 User Guide

To revert to 2K compatibility mode, write a byte of data (value
unimportant) to FE38 C00C.

FE38 C00C selects 2K mode (default)

FE38 C00D selects 8K mode

Replaceable battery
The replaceable battery (p/n M4T28-BR12SH1) is a Snaphat type with
two latches on each end that secure it onto the M48T18 chip. To
remove, use a small screwdriver to pry the battery off the chip. Snap in
the replacement battery matching the orientation of the chip pin 1 to
the dot marking on the battery. The battery has a key tab to ensure
proper mating to the chip. See drawing below.

Snaphat Battery
P/N M4T28-BR12SH1

M48T18
Timekeeper/SRAM

28

1

Timekeeper battery removal/installation

For your convenience, one source for the Snaphat battery is listed
below:

Mouser Electronics
Phone: 1-800-34MOUSE
Stock No.: 511-M4T28BR12SH1
Unit price (as of Oct. 1998): $3.10 (USD)

V452 User Guide 5-1

Interface
 Options 5

This section contains in-depth information about the architecture and
function of the V452 Series I/O, peripheral, and bus interfaces.

Asynchronous serial interface

Ethernet 10Base-T interface option

EZ-bus interface

VME Slave interface

Data broadcasting

VME Master interface

VME Master BLT

System controller

5-2 V452 User Guide

Section 5: Interface Options

Asynchronous serial interface

V452 User Guide 5-3

Asynchronous serial interface

The V452 Series boards provide four high-speed, programmable
asynchronous channels (A , B , C , & D) terminating in the three RJ-45
jacks on the front panel (channels B & D share a jack).

Two Signetics/Motorola 2692 style DUARTs, or Dual Universal Asyn-
chronous Receiver/Transmitters control serial I/O functions. Each 2692
provides two fully-programmable asynchronous serial channels and one
16-bit timer with prescaler.

Note For more information about using the
2692’s counter/timer, see the chapter on
Timers & counters. For more information
about programming the 2692, see the
2692 DUART data sheet in the Datasheet
Supplement that contains reprinted por-
tions of the manufacturer’s data sheets
for devices used on V452 Series and
other boards from Synergy.

Section 5: Interface Options

Asynchronous serial interface

5-4 V452 User Guide

Each 2692 device contains sixteen registers. The table below lists these
registers:

Asynchronous serial interface registers

Register Address Channel Read function Write function

0 FE280003 A Mode register Mode register
1 FE280007 A Status register Clock Select register
2 FE28000B A - reserved - Command register
3 FE28000F A Receive register Transmit register
4 FE280013 - Input port change reg. Aux. Ctrl. register
5 FE280017 - Interrupt status register Interrupt mask
6 FE28001B - Counter A - upper 8 bits * Counter A - upper 8 bits *
7 FE28001F - Counter A - upper 8 bits * Counter A - upper 8 bits *
8 FE280023 B Mode registers Mode registers
9 FE280027 B Status Reg. Clock Sel. register
10 FE28002B B - reserved - Command register
11 FE28002F B Receive Reg. Transmit register
12 FE280033 - - reserved - - reserved -
13 FE280037 - Input port Output Port Config.
14 FE28003B - Start Counter A * Set Output
15 FE28003F - Stop Counter A * Reset Output

0 FE200003 C Mode register Mode register
1 FE200007 C Status register Clock Sel. register
2 FE20000B C - reserved - Command register
3 FE20000F C Receive register Transmit register
4 FE200013 - Input port change reg. Aux. Ctrl. register
5 FE200017 - Interrupt status register Interrupt mask
6 FE20001B - Counter C - upper 8 bits * Counter C - upper 8 bits *
7 FE20001F - Counter C - upper 8 bits * Counter C - upper 8 bits *
8 FE200023 D Mode register Mode registers
9 FE200027 D Status register Clock Sel. register
10 FE20002B D - reserved - Command register
11 FE20002F D Receive register Transmit register
12 FE200033 - - reserved - - reserved -
13 FE200037 - Input port Output Port Config.
14 FE20003B - Start Counter C * Set Output
15 FE20003F - Stop Counter C * Reset Output

Notes: * These locations pertain only to timer functions on the 2692.
For more information, see the chapter on Timers & counters.

Section 5: Interface Options

Asynchronous serial interface

V452 User Guide 5-5

Back-to-back access protection
The 2692 needs to “rest” for a few hundred nanoseconds between
accesses. As a result, the CPU can perform accesses much faster than
the 2692 chip can handle them.

V452 Series boards contain hardware that automatically provides
protection for back-to-back accesses.

Controlling serial interface interrupts
The two 2692 serial interfaces are steerable interrupt sources which
have different implications for single and dual-CPU V452 Series model
boards:

Single-CPU boards can use both interfaces (four ports).

On Dual-CPU boards each interface can be assigned to serve as
an interrupt source to either CPU.

Enabling the serial ports as interrupt sources

To enable serial ports A and B as an interrupt sources on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE390001 |Enable serial A&B to CPU-X

To enable serial ports C and D as interrupt sources on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE390003 |Enable serial C&D to CPU-X

To enable serial ports A and B as an interrupt sources to CPU-Y on a
dual-CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE398001 |Enable serial A&B to CPU-Y

To enable serial ports C and D as interrupt sources to CPU-Y on a dual-
CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE398003 |Enable serial C&D to CPU-Y

Section 5: Interface Options

Asynchronous serial interface

5-6 V452 User Guide

Disabling the serial ports as interrupt sources

To disable serial ports A and B as an interrupt sources on single-CPU
boards or to CPU-X on a dual-CPU board, reset the board or execute
the following 68000 assembler instruction:

moveb #00, 0xFE390000 |Disable serial A&B to CPU-X

To disable serial ports C and D as interrupt sources on single-CPU
boards or to CPU-X on a dual-68060 board, reset the board or execute
the following 68000 assembler instruction:

moveb #00, 0xFE390002 |Disable serial C&D to CPU-X

To disable serial ports A and B as an interrupt sources to CPU-Y on a
dual-CPU board, reset the board or execute the following 68000
assembler instruction:

moveb #00, 0xFE398000 |Disable serial A&B to CPU-Y

To disable serial ports C and D as interrupt sources to CPU-Y on a dual-
CPU board, reset the board or execute the following 68000 assembler
instruction:

moveb #00, 0xFE398002 |Disable serial C&D to CPU-Y

P2 access to serial interface
If desired, V452 Series boards can be configured (via special
modification) to present signals from Ports A and B of the asynchronous
serial interface to the VMEbus P2 connector. For more information
about the required modification and a pinout for where the serial
interface signals will appear on the P2, see the P2 serial interface
option chapter in Appendix A.

Section 5: Interface Options

Ethernet 10Base-T interface option

V452 User Guide 5-7

Ethernet 10Base-T interface
option

Introduction
Ethernet is a LAN (local area network) architecture that provides the
means for computers and other peripherals located in a moderately
sized geographical area to communicate with each other at high speed.

The Ethernet prototype was developed by Xerox Corporation in 1975
and grew to a standard LAN specification 10 years later (IEEE 802.3-
1985) with the collaborative efforts of Digital Equipment Corporation,
Intel Corporation, and Xerox Corporation.

Ethernet provides what is called a “link level” facility since it deals with
the lowest two layers of network architecture as defined by the ISO
Model for Open Systems Interconnection: the Physical Level and the
Data Link Layer.

With Ethernet, the type of data it transmits is immaterial since it does
not concern itself with data protocol and interpretation. As such,
Ethernet LANs are used for various types of computing platforms such
as mainframe computers, Macintoshes, IBM PC and compatibles,
SPARC workstations, and UNIX systems.

The figure below diagrams the Ethernet architecture and functional
blocks and their relationship to the V452 Ethernet interface.

Section 5: Interface Options

Ethernet 10Base-T interface option

5-8 V452 User Guide

Network Layer

Data Link Layer

Physical Layer

Station
Interface

Data
Encapsulation

Link
Management

Encode &
Decode

Transmit &
Receive

EZ-Bus Module
Ethernet
Interface

Transition
Module
Ethernet

Connectors

To Station

To Synergy
CPU Motherboard

Architecture

Function

Synergy EZ-bus Implementation

Ethernet
Cable

Ethernet Architecture and Functional Blocks

The V452 Ethernet interface is based on the Intel 82C596 intelligent
Ethernet coprocessor. The 82C596 can be configured to support all
ANSI/IEEE 802.3-1985 specifications. The 82C596’s DMA controller lets
the V452 Ethernet interface access the motherboard bus and memory
with little or no CPU intervention.

Section 5: Interface Options

Ethernet 10Base-T interface option

V452 User Guide 5-9

Ethernet network connections
The V452 provides an Ethernet 10Base-T port at the front panel. A
10Base-T system is a star topology network in which each DTE (data
terminal equipment) is connected to a shared hub through a single, 4-
pair unshielded twisted pair (UTP) cable. The UTP cable is similar to
modular telephone cable. For network use, however, a higher grade (or
category) of cable is typically used. Category 3 is the minimum for
10Base-T, but Category 4 or 5 is more often recommended. Cable
connections are made to an 8-pin RJ-45 modular jack. The maximum
distance between DTE and hub is 100 m (328 ft.).

The figure below shows a typical 10Base-T single hub network.

HUB

DTEs

10Base-T single hub network

Section 5: Interface Options

Ethernet 10Base-T interface option

5-10 V452 User Guide

Data transmission
Both clock and NRZ data information is Manchester-encoded in bit-
serial form and encapsulated in a basic unit called a frame packet.

The frame packet is made up of seven fields in which the data field is
bracketed by several bytes of information. The figure below shows the
format of an Ethernet frame.

Preamble
62 bits

Bits within byte transmitted LSB first (except FCS)

SFD
2 bits

Destination
6 Bytes

Source
6 Bytes

Length
2 Bytes

Data
46–1500 Bytes

FCS
4 Bytes

Ethernet Frame Packet Format

The packet fields are summarized below.

Preamble — is a series of alternating 1’s and 0’s that serve to
synchronize the clock and other circuitry on all the receivers and
repeaters on the network.

Start of Frame Delimiter (SFD) — consists of two consecutive 1’s to
signal the start of a frame.

Destination — six bytes to indicate the destination of the packet on the
network.

Source — six bytes to indicate the node that sent the packet.

Length — two bytes to indicate the number of bytes contained in the
data field.

Data — 46–1500 data bytes. Stations that need to send less than 46
bytes of data must pad the data to reach the minimum requirement.
Stations that need to send in excess of 1500 bytes of data must send
multiple frame packets.

Frame Check Sequence — CRC value of packet (not including preamble
and SFD fields) for error detection. Receiver rejects the frame if the
calculated CRC value of the received data does not match the
transmitted CRC value.

Section 5: Interface Options

Ethernet 10Base-T interface option

V452 User Guide 5-11

Ethernet ID or physical address

An Ethernet board is typically designed with a unique Ethernet ID (also
called physical address) in ROM; by default any Ethernet packet sent to
this ID will be received by the board and passed to the host. Packets
addressed to other Ethernet IDs will be seen by the board, but ignored
(by default).

The Ethernet ID is a 12-digit number. This number is made up of three
bytes of manufacturer’s ID followed by another three bytes of a unique
identifier number. The Ethernet ID is what’s contained in the
Destination and Source fields of the Ethernet packet.

For Synergy boards, Synergy’s 3-byte manufacturer’s ID (00:80:F6) is
compiled into the Ethernet driver code as a macro. The second half of
the Ethernet ID is made up of the 6-digit SBC serial number which is
stored as 3 bytes of BCD in these NVRAM locations:

NVRAM address 0xFE10_0778: single processor, CPU-X

NVRAM address 0xFE10_0774: dual processor, CPU-Y

Synergy’s 3-byte manufacturer’s ID is combined with the board serial
number to produce the Ethernet ID of the board’s Ethernet interface.
For example, for a board serial number of ‘123456’, the Ethernet ID is
“00:80:F6:12:34:56”.

For more information on the V452 non-volatile SRAM, refer to the Non-
volatile 8K x 8 SRAM chapter in Section 4.

Avoiding bus contention — CSMA/CD

To avoid contention from two or more stations trying to talk at the
same time on the network, Ethernet uses a media access method called
CSMA/CD (Carrier Sense Multiple Access with Collision Detection).
With CSMA/CD, a station transmits a frame only when the network is
not busy. If a collision does occur after a transmission, the station
resolves it by retransmitting the frame.

❏ To avoid contention, stations monitor a carrier signal (an
encoded clock signal integrated with the data) that indicates
whether or not another station is transmitting. If a station has
data of its own to transmit and the network is not busy, it is sent
immediately. Otherwise, if the network is busy, the station waits
until it senses no activity plus an extra delay time padding for
channel recovery before transmitting its own data.

Section 5: Interface Options

Ethernet 10Base-T interface option

5-12 V452 User Guide

❏ When a collision does occur, all stations are notified of the
occurrence by a signal applied to their Collision Detect input.
Any station that is currently transmitting must stop and wait a
certain amount of time before retransmitting the frame. The
station’s location on the network is factored into the time delay
to ensure that no overlap occurs with other stations that may
also be retransmitting their data. A packet less than the minimum
size (512 bits) is considered a collision remnant and is ignored
by the receiving station.

Interchange signals
Ethernet uses differential driver circuits for its interchange signals. For
the onboard 10Base-T interface, the transmit data and receive data
signals are transformer coupled internally on the SBC and routed to the
front panel RJ-45 jack. The table below lists the interchange signals and
their pin assignments on the RJ-45 jack.

P8, RJ-45 Pin IEEE 802.3 Name Function Signal from:
1 DO+ (Data Out +) DTE
2 DO– (Data Out –) Transmit Pair DTE

NC DO S (DO Shield) DTE
3 DI+ (Data In +) MAU
6 DI– (Data In –) Receive Pair MAU

NC DI S (DI Shield) DTE
NC CO+ (Control Out +) DTE
NC CO– (Control Out –) Optional Pair DTE
NC CO S (CO Shield) DTE
NC CI+ (Control In +) MAU
NC CI– (Control In –) Collision Detect MAU
NC CI S (Shield) DTE
NC VC (Voltage Common) DTE
NC VP (Voltage Plus) Power Pair DTE
NC VS (Voltage Shield) DTE
NC PG (Protective Gnd) DTE

DTE = Data Terminal Equipment
MAU = Medium Attachment Unit (Transceiver)
NC = no connection

Section 5: Interface Options

Ethernet 10Base-T interface option

V452 User Guide 5-13

Address map
The table below lists the address map and control register locations of
the onboard Ethernet 10Base-T interface.

Ethernet interface address map (82C596)

Address Width Reg
Number

Read Access Write access

FE3B 8000 D32 EthPrt — Ethernet interface

FE3B C000 D32 EthCA — Ethernet Channel Attention

Ethernet/VMEbus control registers (FE3A 4000–F)

Function Write to: (default) Write to:

Ethernet Int. to CPU-X FE3A 4000 Disable FE3A 4001 Enable

Ethernet Int. to CPU-Y FE3A 4002 Disable FE3A 4003 Enable

Ethernet Jabber FE3A 4004 Enable FE3A 4005 Disable

Auto Polarity/Enhanced Squelch FE3A 4006 Enh. Squelch FE3A 4007 Auto Polarity

VMEbus Request Level FE3A 400A |— Level 3 FE3A 400A |— Level 2
FE3A 4008 | FE3A 4009 |

FE3A 400B |— Level 1
FE3A 4008 |

FE3A 4009 |— Level 0
FE3A 400B |

– Reserved – Bits FE3A 400C–F
* Note: Write to the indicated address pair for the bus request level shown.

Interrupts and vectors
The table below lists the interrupt levels and vectors for the onboard
Ethernet 10Base-T interface.

Ethernet interface interrupts

Interrupt
source

Interrupt
priority level

Vector number (Hex)

Ethernet interface 4 0x45

Section 5: Interface Options

Ethernet 10Base-T interface option

5-14 V452 User Guide

82C596 programming details
The most useful excerpts from the manufacturer’s data sheet for the
82C596 data sheet can be found in the 82C596 datasheet chapter in
the Datasheet Supplement manual. Refer to this manual for details
about the registers and programming of the 82C596.

Section 5: Interface Options

EZ-bus interface

V452 User Guide 5-15

EZ-bus interface

The Synergy EZ-bus is a flexible, interrupt-driven interface allowing
Synergy CPU boards to accept connection of one or two independent
daughter modules. Most modules are half-size and occupy the same
slot as the motherboard when connected.

The 32-bit EZ-bus can support up to 60 MB/s data transfers as a bus
Master or Slave.

The EZ-bus interface provides a DMA capability so that daughter
modules that are able to serve as bus Masters can transfer data directly
to/from the V452 Series on-board triple-ported Dynamic RAM without
CPU intervention.

Note Whenever an external EZ-bus Master
writes to a portion of the V452 Series
memory that is being cached by the on-
board CPU, a cache-to-memory inco-
herency condition is possible that could
result in a loss of data. For a discussion of
these cache coherency considerations
and a summary of some useful cache
management techniques, refer to the
chapter on the 68060 CPU.

Section 5: Interface Options

EZ-bus interface

5-16 V452 User Guide

EZ-bus modules
The following EZ-bus modules are interchangeable among all of
Synergy’s VMEbus CPU board product lines. The table below
summarizes the major features provided by each module. The
paragraphs that follow briefly describe each of the EZ-bus modules
listed in the table. Half-size modules, which occupy the same slot as the
CPU board, are identified.

EZ-bus module feature selection chart

Prototyping
Development

Ethernet
SCSI

Async. serial
Sync. serial

T1/V.35
Parallel I/O
HSC (ATT)

Communications

EW
SE

E1
26

VP
RO

EP
RO

ES
SE

EU
16

EU
20

EC
OM

ES
ER

EH
SC

EV
SB

EG
ES

DMA
Encryption

Graphics

System support

ES
OE

VSB
GPIB

Bus support

➟ E126 — provides a high speed parallel port. (half-size)
➟ ECOM — provides concurrent central I/O processing and 10

DMA channels. Includes SCSI-2/SCSI-1, Ethernet, and four serial
asynchronous/synchronous channels all with DMA. (half-size)

➟ EGES — provides an interface between 680x0 and the General
Purpose Interface Bus (GPIB). The board is compatible with IEEE-
488, concurrent central I/O processing, 2 DMA channels and
support for SCSI-2/SCSI-1 and Ethernet/Thinnet (half-size)

Section 5: Interface Options

EZ-bus interface

V452 User Guide 5-17

➟ EHSC — provides a 16-bit, 10 MB/sec, parallel port conforming
to the AT&T High-speed Channel (HSC) specification. (half-size)

➟ ESOE — provides a high performance fast, wide SCSI-2 interface
and a 10Base-T Ethernet interface supporting up to 8 channels,
all with DMA support. (full-size)

➟ VPRO — is a wire-wrap board containing all required interface
connectors for prototyping new EZ-bus modules. It includes the
EZ-bus Designer’s Guide describing the design features and char-
acteristics for the EZ-bus. (full-size)

➟ EPRO — is a wire-wrap board containing all required interface
connectors for prototyping new EZ-bus modules. It includes the
EZ-bus Designer’s Guide describing the design features and char-
acteristics for the EZ-bus. EPRO is designed for development in a
stacked, daughter board configuration in which an EZ-bus
module is already installed in the module A position. (full-size)

➟ ESER — provides an Ethernet and four high performance
universal synchronous/asynchronous serial interfaces all with
DMA. The serial interfaces can be used in a wide variety of
applications including T1/E1 digital phone channels. (half-size)

➟ ESSE — provides SCSI, Ethernet, two asynchronous serial ports,
eight asynchronous serial ports, and DES data encryption.
Alternate versions are also available containing SCSI only,
Ethernet only, or serial only. (half-size)

➟ EU16 — provides 16 asynchronous serial RS-232 channels featur-
ing Clear-to-Send (CTS) and Request-to-Send (RTS) signals. (half-
size)

➟ EU20 — provides 2 synchronous serial channels with full modem
control signals and 18 asynchronous channels with Clear-to-Send
(CTS) and Request-to-Send (RTS) signals. Supports various serial
protocols. (half-size)

➟ EVSB — provides an interface and full support for the Motorola
VME subsystem bus (VSB). (half-size)

➟ EWSE — provides a high performance wide SCSI-2 and Ethernet
interface with DMA support. (half-size)

➟ E??? — Order or create custom EZ-bus modules using the EZ-bus
Designer’s Guide.

Section 5: Interface Options

EZ-bus interface

5-18 V452 User Guide

Note New daughter modules are continuously
being added to this list.

The EZ-bus Designer’s Guide specifies
the mechanical and electrical characteris-
tics and requirements for EZ-bus mod-
ules. It also contains more detailed
descriptions of all of the available EZ-bus
modules.

This information is of interest to all EZ-
bus module users and is essential for
those who wish to design their own cus-
tom daughter modules. Synergy will
design custom daughter modules for
OEMs and quantity buyers. Please con-
tact Synergy for more information.

EZ-bus connectors
The EZ-bus sockets (P3 & P4) are located on the P2 side of the board
The EZ-bus sockets connect to rows A and C of P2 (and to rows D and
Z if optional 160-pin VMEbus connectors are used), allowing
connection either to I/O or to a side bus such as VSB or VMX. These
sockets also connect to the CPU’s local bus and power pins. For
pinouts of the P3 and P4 EZ-bus connectors see Appendix A, Cables &
Connectors.

Section 5: Interface Options

EZ-bus interface

V452 User Guide 5-19

Controlling EZ-bus module interrupts
The two EZ-bus modules (if present) are steerable interrupt sources
which have different implications for single and dual-CPU V452 Series
model boards:

Single-CPU boards can receive interrupts from both EZ-bus
modules that may be installed.

On Dual-CPU boards, each interface can be assigned to serve as
an interrupt source to either CPU.

Note Each EZ-bus module is assigned only one
interrupt level (Level 4) on V452 Series
boards. However, some EZ-bus modules
contain more than one interrupt source.
For modules with more than one source,
interrupt arbitration is performed on the
module, providing separate interrupt
vectors for the different interrupt sources
before being asserted to the
motherboard. For more information, see
the manual for the individual EZ-bus
module you are using.

Enabling the EZ-bus modules as interrupt sources

To enable EZ-bus module A as an interrupt source on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE390009 |Enable EZ-bus A to CPU-X

To enable EZ-bus module B as an interrupt source on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE39000B |Enable EZ-bus B to CPU-X

To enable EZ-bus module A as an interrupt source to CPU-Y on a dual-
CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE398009 |Enable EZ-bus A to CPU-Y

Section 5: Interface Options

EZ-bus interface

5-20 V452 User Guide

To enable EZ-bus module B as an interrupt source to CPU-Y on a dual-
CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800B |Enable EZ-bus B to CPU-Y

Disabling the EZ-bus modules as interrupt sources

To disable EZ-bus module A as an interrupt source on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE390008 |Disable EZ-bus A to CPU-X

To disable EZ-bus module B as an interrupt source on single-CPU
boards or to CPU-X on a dual-CPU board, execute the following 68000
assembler instruction:

moveb #00, 0xFE39000A |Disable EZ-bus B to CPU-X

To disable EZ-bus module A as an interrupt source to CPU-Y on a dual-
CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE398008 |Disable EZ-bus A to CPU-Y

To disable EZ-bus module B as an interrupt source to CPU-Y on a dual-
CPU board, execute the following 68000 assembler instruction:

moveb #00, 0xFE39800A |Disable EZ-bus B to CPU-Y

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-21

VME Slave interface

The V452 Series provides on-board multi-ported RAM memory making
it accessible by the on-board CPU(s), other VMEbus Masters, or by a
EZ-bus daughter module Master that is mounted on the V452 Series
board's expansion bus.

External VMEbus Masters access the V452 Series on-board RAM via the
board’s VME Slave interface. The V452 Series VME Slave interface
recognizes both the A32 or A24 VME address modes and accepts D32,
D16, and D8 data transfers. V452 Series boards can also accept both
64-bit (VME64) and 32-bit (VME32) VME block transfers (BLTs).

V452 Series boards can supply 4, 8, 16, 32, 64, 128, 256 or 512
MBytes of dynamic RAM (last two sizes are special order items). They
also provide software-controlled circuitry allowing the Slave access
window to reside anywhere within the 4 GByte VMEbus addressing
range.

V452 Series boards provide other software-programmable registers to
configure and control other characteristics of the VME Slave interface.
This chapter describes these controls and the available configuration
options.

Note V452 Series boards include an interrupt-
driven CPU Mailbox that can play a key
role in inter-CPU communications. For
more information, see the CPU Mailbox
chapter in Section 4.

Section 5: Interface Options

VME Slave interface

5-22 V452 User Guide

Setting up the VME Slave interface
The VME Slave interface for V452 Series boards can be programmed
for various characteristics and operations. The Slave access window to
the board can appear in VME Extended address space (A32/D32 or
A32/D16), VME Standard address space (A24/D32 or A24/D16) or
may even be disabled as a Slave completely.

The following jumpers and software-accessible registers control the
characteristics and operation of the VME Slave interface:

Jumper JK17 enables/disables VME Slave remote resets,

The Slave Interface Control register (0xFE38 8000) controls
several Slave interface characteristics and operational modes,

The Primary and Extended Control registers (0xFE38 C000 &
FE3A 0000) control other Slave interface characteristics and op-
erational modes,

The Extended Mode register (0xFE38 4003) enables/disables
the VME Slave interface,

The paragraphs that follow describe the default characteristics of the
Slave Interface, the configuration choices, and the way to implement
the desired configuration.

Default Slave interface conditions

V452 Series boards provide the following default conditions for the
VME Slave interface:

VME Slave remote reset is disabled — This feature is enabled/
disabled via jumper,

VME Slave accesses are disabled — While in this disabled state,
the remaining conditions appearing in the bullets below can be
set but are not active,

Slave write accesses (if enabled) are limited to Masters operating
in 68000 Supervisor mode,

If the Slave interface is enabled, the following default configura-
tion is present as follows,

• 32-bit (A32) Extended mode addressing
• 0 MB (x000 0000) Base address
• Slave window equal to installed memory

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-23

VME broadcasting is disabled.

Note The list above describes the default con-
ditions for the board. Default, in this case,
refers to a board that contains no VME
Slave interface jumpering and has not
been initialized or booted by any
software.

Enabling/disabling VME Slave remote reset

V452 Series board can support remote reset by Masters across the
VMEbus. If this feature is enabled, another VMEbus Master can reset a
specific V452 Series board by writing to the board’s Slave reset
registers.

The second to last 256 byte region of on-board RAM acts as a reset
register. A Supervisor mode write to byte zero of this area (Slave Base
Address + 3FFEX0 on a 4MB card) by another VMEbus Master resets
the V452 Series board. Refer to the Reset via software discussion in the
Default & reset conditions chapter for information on setting up and
using remote reset.

The remote slave reset feature is enabled or disabled via jumper JK17
as shown in the figure below.

Installing a shunt between pins 11 and 12 of jumper field JK17 enables
Remote Reset, while removing the shunt disables remote reset.

11 12
Remote Reset Enable

No jumper = Disabled

Jumper setting (JK17) — VME Slave remote reset.

Section 5: Interface Options

VME Slave interface

5-24 V452 User Guide

Setting A32 or A24 VME addressing

V452 Series Slave interface can decode either 32-bit (A32) Extended
Addressing or 24-bit (A24) Standard Addressing from a VMEbus Master.
The Slave Interface Control register determines the current address
mode setting.

Note V452 Series boards do not support A16
VME address mode accesses as a VME
Slave but are able to generate 16-bit
(A16) addresses as VMEbus Masters. For
more information see the VME Master
interface chapter in this section.

The default setting for V452 Series boards is A32 addressing. To set up
a V452 Series board for A24 addressing, execute the following 680x0
assembler instruction (or include it in the board’s boot/initialization
code):

moveb #0x00, 0xFE388001 | A24 addressing

To return to A32 addressing, either reset the board or execute the fol-
lowing instruction.

moveb #0x00, 0xFE388000 | A32 addressing

Configuring Slave write access memory protection

If enabled, the V452 Series Slave interface provides complete read
access to all VMEbus Masters and one of the following three write
access privilege levels:

Memory protect — this level blocks all attempted write accesses
to on-board RAM by external VMEbus Masters.

Supervisor only — this level limits write accesses to Master pro-
cessors currently operating in 68000 Supervisor mode. Write
accesses from Master processors operating in 68000 User mode
are blocked.

No memory protect — this level grants write access privileges to
all VMEbus Masters and disables all memory protection.

The table below shows the slave write access protection levels as set by
the Primary Mode register and Slave Interface Control register.

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-25

Slave write access protection levels

Slave write access level Memory protect control
(Primary Mode register)

Supervisor-only control
(Slave Interface Control reg.)

Memory protect (from all Slave
write accesses)

ON Don't care

Supervisor-only write accesses OFF ON

No memory protect OFF OFF

The paragraphs below describe these Slave write access protection
levels in greater detail and the controls used to enable or disable them.

Note As shown in the matrix, the memory pro-
tect control setting in the Primary Mode
register takes precedence over the
Supervisor-only controls in the Slave
Interface Control register. Thus, to set
either supervisor-only or no memory pro-
tect level, memory protect must be
turned OFF.

Memory write protect — this setting blocks all attempts by VMEbus
Masters to write to on-board memory while still allowing memory read
access. Slave write access is enabled/disabled by writing the appropri-
ate hex value to the Primary Mode register. The hex values correspond-
ing to this functions are listed below:

Primary Mode register [FE38 0003] — VME Slave functions

Hex data value Function
05 Memory protect OFF — Allow Slave write accesses to RAM (default)
0D Memory protect ON — Do NOT allow Slave write accesses to RAM

The default setting for the memory protect control in the Primary Mode
register is OFF, which allows Slave write accesses to on-board memory.
To turn ON Slave write access protection, execute the following 680x0
assembler instruction (or include it in the boot/initialization code):

moveb #0x0D, 0xFE380003 | Turn memory protect ON

To turn OFF Slave write access protection (once it is ON), either reset
the board or execute the following instruction.

moveb #0x05, 0xFE380003 | Turn memory protect OFF

Section 5: Interface Options

VME Slave interface

5-26 V452 User Guide

Note When Slave write access memory protec-
tion is ON, no Slave write accesses are
allowed regardless of the settings made
to the Slave Interface Control register.
The Slave Interface Control register
affects Slave write accesses only when
memory protect is in the OFF or default
state.

Supervisor-only vs. No memory protect — If Slave write accesses are
allowed, (as described above) the V452 Series Slave interface allows
you to control which Masters are allowed to write to Slave on-board
memory as follows:

Supervisor-only — allows write accesses from VME Masters
whose processor is operating at that moment in 68000
Supervisor mode and prohibits write accesses from VME
Masters whose processor is operating at that moment in 68000
User mode. Supervisor-only access is the default Slave write
access condition for V452 Series boards.

No memory protect — allows write accesses to all VME Masters.

The board’s Slave interface circuitry determines the Master’s operating
mode by reading the Address Modifier (AM) codes that accompany
each Slave address. Among other things these codes identify the
impending data transfer as either a Supervisory access (i.e., originating
from a Master in 68000 Supervisor mode) or a Non-privileged access
(i.e., originating from a Master in 68000 User mode).

If the Slave write access memory protect is OFF (as described in the
previous group of paragraphs) and Supervisor-only function is ON, the
board’s Slave interface allows all Supervisory accesses and block all
user-mode write accesses it receives.

If the Slave write access memory protect is OFF (as described in the
previous group of paragraphs) and Supervisor-only function is OFF, the
board’s Slave interface allows all write access from the VMEbus.

Presuming that the memory protect function is set in the default or OFF
position (as described in previous paragraphs), the Supervisor-only func-
tion is enabled/disabled on V452 Series boards by writing to the Slave
Interface Control register.

In the default condition, Supervisor-only accesses are enabled. To set up
a V452 Series board to allow all VME Masters to access on-board

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-27

memory, execute the following 680x0 assembler instruction (or include
it in the board’s boot/initialization code):

moveb #0x00, 0xFE388003 | No memory protect

To return to Supervisor-only Slave write accesses, either reset the board
or execute the following instruction:

moveb #0x00, 0xFE388002 | Supervisor-only enable

Setting the Slave window base address

The base address for the board’s VMEbus Slave access window is set by
writing to the Slave Interface Control (FE38 8000) and Extended
Control registers (FE3A 0000).

Note V452 Series boards use the placement of
the VME Slave access window to set up
the board for VME data broadcasting. If
you intend to use the data broadcasting
features, please review the next chapter
on Data broadcasting before setting up
the Slave window location.

The table on the facing page is a worksheet to help you determine how
to configure the Slave Interface Control and Extended Control locations
to place the VME Slave access window in the desired location. The
paragraphs below describe how to use this worksheet:

➊ Write the three most significant hexadecimal digits of the desired
VMEbus Slave base address into the three empty boxes on the
left side of the table. Write the most significant hex digit into the
top box, the 2nd most significant digit into the middle box and
the 3rd most significant digit into the bottom box.

➋ Translate each hexadecimal digit and write in its binary
equivalent into smaller boxes in the second column to the left.
Each of these boxes is associated with a particular bit in the
VMEbus Slave base address as listed in the table.
The two columns on the right-side of the table, list the register
locations that set each bit to either the "0" or "1" condition as
required. To set the Slave base address, write the appropriate
location for each of the binary values that you have written on
the second column from the left.

Section 5: Interface Options

VME Slave interface

5-28 V452 User Guide

Note When the board is reset, all the bits listed
in the table are set to “0”. Thus, to set the
Slave base address after booting the
board, just write to the locations for the
bit(s) that need to be set to “1”.

VMEbus Slave window base address configuration

Write in 3 most significant
hex digits of desired

VME Slave base address 1

Write binary
equivalent of
each digit 2

Don’t
care bit
if mem.
≥X MB5

VME
addr
bit

To set this
bit to "0"
write to:3

To set this
bit to "1"
write to:

Most significant hex digit Bit 31 FE38 800E 4 FE38 800F
Bit 30 FE3A 000E 4 FE3A 000F
Bit 29 FE3A 000C 4 FE3A 000D

512MB Bit 28 FE3A 000A 4 FE3A 000B
2nd most significant hex digit 256MB Bit 27 FE3A 0008 4 FE3A 0009

128MB Bit 26 FE38 800C 4 FE38 800D
64MB Bit 25 FE38 800A 4 FE38 800B
32MB Bit 24 FE38 8008 4 FE38 8009

3rd most significant hex digit 16MB Bit 23 6 FE38 8006 4 FE38 8007
8MB Bit 22 7 FE38 8004 4 FE38 8005

N/A Bit 21 8 N/A N/A
N/A Bit 20 8 N/A N/A

Notes:
1 Write the 3 most significant digits of the desired VME Slave base address in the three

boxes in this column. Write the most significant hex digit in the top box, the 2nd most
significant digit in the middle box, and the 3rd most significant digit in the bottom box.

2 Translate each hex digit into the equivalent 4-bit binary expression. Write this expression
with the most significant bit at the top and the least significant at the bottom for each
group of four bits.

3 V452 decodes only the address portion of accesses to these registers. The data value
written does NOT matter.

4 After a power cycling or reset, the Slave address bits are set to all "0"s.Thus, if you are
setting the VME Slave base address after boot-up, it is NOT necessary to write to any of
the "0" register locations; it is only necessary to write to the "1" locations.
However, if changing the VME Slave window "on the fly" or after setting it previously, it is
highly recommended that you specify the entire address by writing to both the "0" and "1"
locations.

5 If local memory size is equal to or greater than value shown, the bit in next column is a
"don't care" bit. If local memory size is less than this amount, write to the appropriate
register location as required.

6 The slave window will be 16MB if this bit and bit 22 are both set to 0 and 8MB mode is
OFF. This bit must be set to "0" if using data broadcasting. For more information see the
next chapter.

7 The slave window will be 16MB if this bit and bit 23 are both set to 0 and 8MB mode is
OFF. This bit must be set to "0" if using data broadcasting. For more information see the
next chapter.

8 These bits are not configurable, the minimum slave window size is 4 MB.

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-29

For example, to set the base address for a VME Slave window to be:

7AC0 0000

would require writing in the 3 most significant hex digits in the far left
column and then the binary equivalents in the second column resulting
in a table that looks like the one shown below:

VMEbus Slave window base address configuration — EXAMPLE

Write in 3 most significant
hex digits of desired

VME Slave base address 1

Write binary
equivalent of
each digit 2

VME
address

bit

To set this bit
to "0" write to:

To set this bit
to "1" write to:

Most significant hex digit 0 Bit 31 FE38 800E 4 FE38 800F
1 Bit 30 FE3A 000E 4 FE3A 000F

7 1 Bit 29 FE3A 000C 4 FE3A 000D

1 Bit 28 FE3A 000A 4 FE3A 000B
2nd most significant hex digit 1 Bit 27 FE3A 0008 4 FE3A 0009

0 Bit 26 FE38 800C 4 FE38 800D

A 1 Bit 25 FE38 800A 4 FE38 800B

0 Bit 24 5 FE38 8008 4 FE38 8009
3rd most significant hex digit 1 Bit 23 6 FE38 8006 4 FE38 8007

1 Bit 22 7 FE38 8004 4 FE38 8005

C N/A Bit 21 8 N/A N/A

N/A Bit 20 8 N/A N/A

To set up the Slave window base address at the location listed in the
table, you would need to include the following instructions (shown in
680x0 assembler) in the intialization code for the board:

moveb #0x00, 0xFE38800E | Set bit A31 to "0"
moveb #0x00, 0xFE3A000F | Set bit A30 to "1"
moveb #0x00, 0xFE3A000D | Set bit A29 to "1"
moveb #0x00, 0xFE3A000B | Set bit A28 to "1"
moveb #0x00, 0xFE3A0009 | Set bit A27 to "1"
moveb #0x00, 0xFE38800C | Set bit A26 to "0"
moveb #0x00, 0xFE38800B | Set bit A25 to "1"
moveb #0x00, 0xFE388008 | Set bit A24 to "0"
moveb #0x00, 0xFE388007 | Set bit A23 to "1"
moveb #0x00, 0xFE388005 | Set bit A22 to "1"

Section 5: Interface Options

VME Slave interface

5-30 V452 User Guide

Note The instructions shown on the previous
page for address bits A31 (first line), A26
(sixth line), and A24 (eighth line) are
required only if the state of these bits
have been previously changed from the
default "0" condition. For the sake of
modularity, however, it may still be ad-
visable to include an instruction for each
address line as shown in this sample.

VME Slave memory-size-specific information/8 MB mode

4MB — This size uses slave address bits A22 to A31 to set the slave
address on a 4MB boundary. However, when slave address is set to
xx000000 in A32 address mode, then the slave window is 16MB, not
4MB.

Set the 8 MByte mode to OFF (default).

8MB — This size uses slave address bits A23 to A31 to set the slave
address on an 8MB boundary. This is true for either A32 or A24 address
modes.

Set the 8 MByte mode to ON. To do this, execute the following
assembly-language instruction:

moveb #0x00,0xFE3A0005 | sets slave to 8MB window size

16MB — This size uses slave address bits A24 to A31 to set the slave
address on a 16MB boundary in A32 address mode. It is possible to
access only one 4 MB segment of the DRAM in A24 mode. The
accessible segment is that whose address matches bits A22 and A23 of
the VME slave address window.

Set the 8 MByte mode to OFF (default).

32MB — This size uses slave address bits A25 to A31 to set the slave
address on a 32MB boundary in A32 address mode. A VME slave
access in A24 mode produces undefined results.

Set the 8 MByte mode to OFF (default).

64MB — This size uses slave address bits A26 to A31 to set the slave
address on a 64MB boundary in A32 address mode. A VME slave
access in A24 mode produces undefined results.

Set the 8 MByte mode to OFF (default).

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-31

128MB — This size uses slave address bits A27 to A31 to set the slave
address on a 128MB boundary in A32 address mode. A VME slave
access in A24 mode produces undefined results.

Set the 8 MByte mode to OFF (default).

256MB — This size uses slave address bits A28 to A31 to set the slave
address on a 256MB boundary in A32 address mode. A VME slave
access in A24 mode produces undefined results.

Set the 8 MByte mode to OFF (default).

512MB — This size uses slave address bits A29 to A31 to set the slave
address on a 512MB boundary in A32 address mode. A VME slave
access in A24 mode produces undefined results.

Set the 8 MByte mode to OFF (default).

Enabling/disabling the Slave interface
V452 Series boards provide a master switch for the Slave interface that
either turns ON or completely turns OFF the Slave interface under
software control.

In the default condition the Slave interface is disabled. While disabled,
the Slave interface on a V452 Series board is unable to respond to
accesses from the VMEbus in any way, but can be configured using any
of the methods described in the preceding paragraphs.

Once it has been set to the desired arrangement, the Slave interface
must be enabled before it will actually be able to operate.

To enable it, write 0F to the Extended Mode register at 0xFE38 4003
using the following assembler commands:

moveb #0x0F, 0xFE384003

To disable the Slave interface, which effectively blocks all accesses to
the board’s on-board RAM from the VMEbus, either reset the board or
write 07 to the Extended Mode register at 0xFE38 4003 using the
following assembler commands:

moveb #0x07, 0xFE384003

Section 5: Interface Options

VME Slave interface

5-32 V452 User Guide

Note Unlike the other initialization command
described in previous paragraphs, writes
to the Mode registers described above
require correct address AND data ex-
pressions.

Multi-port memory access contention
Because the board’s memory is triple-ported, contention can occur
when simultaneous access is made to it by more than one Master. This
Local bus contention is discussed in the Dynamic RAM chapter in the
section entitled Resolving lock contention.

Self references

If a board attempts a VMEbus access to its own VME Slave address, the
access is ignored by its Slave logic. In most configurations, there will be
no other VMEbus Slave responding to that address and the VMEbus
time-out counter will fire and cause a VME bus error. Should the card
be operating with no VMEbus or without a VME System Controller, any
VMEbus or “self references” will cause the card to hang, unless the on-
board system controller has been jumpered to provide bus timeouts.

In some dual V452 Series board systems where it may be desirable to
load identical software onto each board, it is useful for both V452
Series boards to have the same VMEbus Slave address. In this case,
each board is able to access the other's memory by ignoring self-refer-
ences and by allowing the other card to respond.

VME addresses

The standard address map used by other VMEbus Masters to access the
V452 Series board's on-board DRAM is listed in the Address map
chapter in Section 3 or on the V452 Series Quick Reference Card.

Section 5: Interface Options

VME Slave interface

V452 User Guide 5-33

VME Slave block transfer (BLT)
Normal VME transfers move one 32-bit word per address strobe. Due
to arbitration and contention overhead, such transfers are typically
limited to about 8 MB/sec for multi-ported memory. VME block trans-
fers (BLTs) on the other hand, transfer up to 256 32-bit words per
address strobe. Because arbitration and contention overhead are amor-
tized over many words, BLTs can run in excess of 30 MB/sec even
while executing from triple-ported memory.

The V452 Series supports BLT32 Slave transfers at 30+ MB/sec and
BLT64 Slave transfers at 60+ MB/sec. The VME Master determines
whether or not a data transfer uses the block transfer technique. As a
VME Slave with the BLT option the V452 Series simply responds to the
BLT Master. No software or jumpers are required to implement this
feature. When combined with data broadcasting, the BLT feature
provides amazing data rates. For example, a single VME Master writing
to 8 CPU boards can transfer data at an effective rate of over 240
MB/sec.

Section 5: Interface Options

VME Slave interface

5-34 V452 User Guide

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-35

Data broadcasting

Data broadcasting is an optional feature of V452 Series boards that
allows any board in an established broadcasting group to write the
same data to all other boards in the same group as a single bus transfer
event. This feature is offered on Synergy CPU boards and may not be
available on products from other manufacturers.

Data broadcasts are performed by writing to a special group address
that causes every board within the broadcast group to be written to.
However, unlike a normal VME transfer, the data broadcasting circuitry
does not respond with a VME Acknowledge signal until all boards in the
group have finished receiving the write.

This effect is possible because each V452 Series board in the group is
tied together via a common open-collector group wire. When each
board completes its write after receiving the broadcast, it acknowledges
completion of the write by de-asserting the group wire. When all boards
in the group have received and written the broadcast transfer DTAck\ is
asserted and the broadcast cycle is complete.

Note The data broadcast feature does not in-
terfere with a board’s ability to respond
to its individual VMEbus Slave address.
Rather, it allows boards to respond to
two addresses; their individual VME Slave
address and the group address as well.

Setting up V452 Series boards to support data broadcasting requires
the following three configuration steps:

➊ Setting up the V452 Series to support data broadcasting by
installing a small group wire on the solder side of the board,

Section 5: Interface Options

Data broadcasting

5-36 V452 User Guide

➋ Setting up broadcasting groups by configuring the VME Slave
access window location for all boards in a group,

➌ Enabling the data broadcasting function on each board by
writing to an on-board register.

The paragraphs below describe each of these steps in greater detail.

Hardware setup for data broadcasting
All V452 Series boards that are to support data broadcasting require the
installation of a group wire on the solder side of the board. Install the
group wire by connecting JL01 pin 6 to an unused P2 pin using 30
gauge insulated wire. See the diagram below. Attach the group wire to
this same pin for all other boards in the group. Bus all these pins to each
other on the backplane with wire-wrap.

D
C
B
A
Z

JL01

CPU
Solder
side

E
D
C
B
A

P2

PD4

Group wire pin shown connected to P2 pin A27 for
example only. Note that any unused P2 pin may be
used as long as all boards that are to support data
broadcasting use the same pin and that the
corresponding pin is bussed at the backplane.

JL01, pin 6 –
Broadcast Group
Wire Pin

Broadcasting group wire installation

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-37

Note Use a unique group wire location for
each additional data broadcasting group
in the system.

Setting up data broadcasting groups
The Data Broadcast circuit uses the board’s VME Slave window location
to set up data broadcasting. As described in the previous chapter, the
location of the Slave access window is configured by writing to a series
of on-board registers. The data broadcasting circuitry uses this same in-
formation to assign the board to a broadcasting group. The paragraphs
below describe this process in greater detail.

Assigning boards to a broadcast group

Broadcast groups consist of a series of 256 MB boundaries. within the
larger 4 GB VMEbus addressing range. The most significant four bits
(A31-A28) of the base address for a board's VME Slave access window
determines to which broadcast group it belongs. Each board that you
want to have in the same broadcast group must have its VME Slave
access window set to be within the same 256 MB boundary.

In theory this scheme could allow the 4 GB addressing range of the
VMEbus to support up to 16 different 256 MB broadcast groups (where
the range for Group 1 = 0000 0000–0FFF FFFF, Group 2 =
1000 0000–1FFF FFFF and so on). In practice, however, the number of
possible broadcast groups is more limited because local DRAM and
other devices on each board occupy a share of the total address space
that can accessed by each board’s VME Master interface.

The tables below lists the possible broadcast groups that can be setup
for V452 Series boards.

Available address ranges for broadcast groups

Address/ data width Broadcast Group Address range
A32/D32 1

2

3

4

5

6

7

1000 0000

2000 0000

3000 0000

8000 0000

9000 0000

A000 0000

B000 0000

 –

–

 –

–

 –

–

 –

1FFF FFFF

2FFF FFFF

3FFF FFFF

8FFF FFFF

9FFF FFFF

AFFF FFFF

BFFF FFFF

Section 5: Interface Options

Data broadcasting

5-38 V452 User Guide

Available address ranges for broadcast groups (continued)

A32/D16 1

2

3

4

4000 0000

5000 0000

6000 0000

7000 0000

4FFF FFFF

5FFF FFFF

6FFF FFFF

7FFF FFFF

As shown in the tables, if using A32/D32 addressing, up to 7 different
ranges are available for broadcast groups. If using A32/D16 addressing,
up to four ranges can be used for data broadcast groups.

Arranging boards within a broadcast group

Each of the 256 MB group ranges contain the group window that is
used by every board in the group as well as all of the unique VME Slave
windows for the boards in the group. The proper arrangement of the
group and Slave access windows is effected by the following factors:

Location of the group window — The data broadcasting circuitry
automatically positions the group window at the bottom of the
addressing range for the respective broadcasting group.

Size of the group window — The size of the group window is
determined by the amount of local DRAM on the boards in the
group. If all of the boards in the group contain 16 MB (or less) of
local DRAM, the group window occupies the bottom 16 MB of
the group's address range. If one or more of the boards in the
group contains 32 MB of local DRAM, the group window is the
bottom 32 MB of the group range. The data broadcasting
circuitry automatically “detects” the maximum amount of local
memory on all board in the group and sets the group window
accordingly. The minimum size for the group window is 16 MB.

Location of each VME Slave window — The acceptable location
for the Slave access window for each board in the group must
be consistent with the size of the group window. If the group
window is 16MB (because all of the boards in the group contain
16 MB or less of local RAM), then the VME Slave access window
for each board in the group must on a 16 MB boundary within
the group range (not including the bottom 16 MB where the
group window resides) even if they have less than 16 MB of on-
board DRAM. Thus, a “16 MB” broadcast group can have up to
15 member boards.
If the group window is 32 MB (because one or more boards in
the group contain 32 MB of local RAM), then the VME Slave
access window for each board in the group must set up on a 32

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-39

MB boundary within the group range (not including the bottom
32 MB where the group window resides) even if they have less
than 32 MB of on-board DRAM. Thus, a “32 MB” broadcast
group can have up to 7 member boards.

Groups with mixed local memory sizes — As was stated above,
the logic for the data broadcasting hardware automatically sets
the size of the group window to either 16 MB or 32 MB if any of
the boards in the group contain 32 MB of local memory. This
feature is designed to make data broadcasting easier to use.
However, this characteristic has important implications if you
intend to use boards with mixed memory sizes in the same
group. It is important to remember in this case that a board with
4 MB of local memory will only be able to “see” 4 MB of the
group window despite its real size. Because all transfers sent via
the group window are sent to all boards in the group, these
transfers should be made usable by the board with the lowest
amount of DRAM in the group.

Each of the 256 MB group ranges contain the group window that is
used by every board in the group as well as all of the unique VME Slave
windows for the boards in the group. The proper arrangement of the
group and Slave access windows is affected by the following factors:

Address bits A27-A24) of the base address for a board’s VME Slave
access window assigns the location of the Slave window within a
broadcast group. The tables below list the acceptable Slave window
locations within 16 MB and 32 MB broadcast groups.

Section 5: Interface Options

Data broadcasting

5-40 V452 User Guide

VME Slave window ranges for 16 and 32 MB broadcast groups

Group window size Slave window Address range
16 MB

(all boards in group
contain 16 MB or less

of local memory)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x100 0000

x200 0000

x300 0000

x400 0000

x500 0000

x600 0000

x700 0000

x800 0000

x900 0000

xA00 0000

xB00 0000

xC00 0000

xD00 0000

xE00 0000

xF00 0000

 –

–

 –

–

 –

–

 –

–

 –

–

 –

–

 –

–

 –

x1FF FFFF

x2FF FFFF

x3FF FFFF

x4FF FFFF

x5FF FFFF

x6FF FFFF

x7FF FFFF

x8FF FFFF

x9FF FFFF

xAFF FFFF

xBFF FFFF

xCFF FFFF

xDFF FFFF

xEFF FFFF

xFFF FFFF

32 MB
(one or more boards in
group contain 32 MB of

local memory)

1

2

3

4

5

6

7

x200 0000

x400 0000

x600 0000

x800 0000

xA00 0000

xC00 0000

xE00 0000

 –

–

 –

–

 –

–

 –

x2FF FFFF

x4FF FFFF

x6FF FFFF

x8FF FFFF

xAFF FFFF

xCFF FFFF

xEFF FFFF

Enabling/disabling data broadcasting
The last configuration step that is required to allow a board to support
data broadcasting is to enable the data broadcasting function by writing
to the Primary Control register. In the default condition, data
broadcasting is disabled.

To enable data broadcasting, execute the following 680x0 assembler
command:

moveb #0x00, 0xFE38C009

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-41

To disable data broadcasting, either reset the board or execute the
following 680x0 assembler command:

moveb #0x00, 0xFE38C008

Configuring a sample data broadcast group
The paragraphs in this section are a procedure that describe the
required configuration to place three boards into a sample broadcast
group. These three boards have the following memory characteristics:

Board #1 32 MB local DRAM
Board #2 16 MB local DRAM
Board #3 16 MB local DRAM

The remaining paragraphs in this chapter describe the require
configuration to establishing a sample broadcasting group consisting of
the three board listed above.

➊ Choose the broadcasting group address range — Presuming that
all three boards already have a group wire installed, the first step
in the configuration process is to choose the address range for
the broadcast group.
Presuming further that A32/D32 VME addressing is desired,
suppose that the Group 2 range is selected which is highlighted
in the table on the next page.

Address range for SAMPLE broadcast group

Address/data width Broadcast Group Address range
A32/D32 1

2

3

4

5

6

7

1000 0000

2000 0000

3000 0000

8000 0000

9000 0000

A000 0000

B000 0000

 –

–

 –

–

 –

–

 –

1FFF FFFF

2FFF FFFF

3FFF FFFF

8FFF FFFF

9FFF FFFF

AFFF FFFF

BFFF FFFF

➋ Choose the Slave window arrangement — Because one of the
boards in this group has 32 MB of on-board memory, the sample
broadcast group must have the following characteristics:

Section 5: Interface Options

Data broadcasting

5-42 V452 User Guide

• 32 MB group window (set automatically by hardware)
• VME Slave windows for all boards in the group must be

set on a 32 MB boundary.
The table below shows three base address locations (highlighted)
that could be used for the three VME Slave windows in the
sample group.

VME Slave window ranges for the SAMPLE broadcast group

Group window size Slave window Address range
32 MB

(one or more boards
in group contain 32
MB of local memory)

1 (Board #1)

2 (Board #2)

3 (Board #3)

4

5

6

7

x200 0000

x400 0000

x600 0000

x800 0000

xA00 0000

xC00 0000

xE00 0000

 –

–

 –

–

 –

–

 –

x2FF FFFF

x4FF FFFF

x6FF FFFF

x8FF FFFF

xAFF FFFF

xCFF FFFF

xEFF FFFF

➌ Configure Board #1 — To implement the scheme selected in the
first two steps, the base address of the VME Slave window for
Board #1 needs to be set to 2200 0000 which would require
the register configuration shown below.

Slave base address configuration — BOARD #1 (SAMPLE)

Write in 3 most
significant hex digits of
desired VME Slave base

address 1

Write binary
equivalent

of each digit
2

VME
address

bit

To set this bit
to "0" write

to:

To set this bit
to "1" write

to:

Most significant hex digit 0 Bit 31 FE38 800E 4 FE38 800F
0 Bit 30 FE3A 000E 4 FE3A 000F

2 1 Bit 29 FE3A 000C 4 FE3A 000D

0 Bit 28 FE3A 000A 4 FE3A 000B
2nd most significant hex digit 0 Bit 27 FE3A 0008 4 FE3A 0009

0 Bit 26 FE38 800C 4 FE38 800D

2 1 Bit 25 FE38 800A 4 FE38 800B

0 Bit 24 5 FE38 8008 4 FE38 8009
3rd most significant hex digit 0 Bit 23 6 FE38 8006 4 FE38 8007

0 Bit 22 7 FE38 8004 4 FE38 8005

0 N/A Bit 21 8 N/A N/A

N/A Bit 20 8 N/A N/A

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-43

The following instructions would set up and enable the VME
Slave interface and data broadcasting for Board #1:

moveb #0x00, 0xFE38800E | Set bit A31 to "0"
moveb #0x00, 0xFE3A000E | Set bit A30 to "0"
moveb #0x00, 0xFE3A000D | Set bit A29 to "1"
moveb #0x00, 0xFE3A000A | Set bit A28 to "0"
moveb #0x00, 0xFE3A0008 | Set bit A27 to "0"
moveb #0x00, 0xFE38800C | Set bit A26 to "0"
moveb #0x00, 0xFE38800B | Set bit A25 to "1"
moveb #0x00, 0xFE388008 | Set bit A24 to "0"
moveb #0x00, 0xFE388006 | Set bit A23 to "0"
moveb #0x00, 0xFE388004 | Set bit A22 to "0"
moveb #0x0F, 0xFE384003 | Enable VME Slave interface
moveb #0x00, 0xFE38C009 | Enable data broadcasting

➍ Configure Board #2 — The base address of the VME Slave
window for Board #1 needs to be set to 2400 0000 which
would require the register configuration shown below:

Slave base address configuration — BOARD #2 (SAMPLE)

Write in 3 most
significant hex digits of
desired VME Slave base

address 1

Write binary
equivalent

of each digit
2

VME
address

bit

To set this bit
to "0" write

to:

To set this bit
to "1" write

to:

Most significant hex digit 0 Bit 31 FE38 800E 4 FE38 800F
0 Bit 30 FE3A 000E 4 FE3A 000F

2 1 Bit 29 FE3A 000C 4 FE3A 000D

0 Bit 28 FE3A 000A 4 FE3A 000B
2nd most significant hex digit 0 Bit 27 FE3A 0008 4 FE3A 0009

1 Bit 26 FE38 800C 4 FE38 800D

4 0 Bit 25 FE38 800A 4 FE38 800B

0 Bit 24 5 FE38 8008 4 FE38 8009
3rd most significant hex digit 0 Bit 23 6 FE38 8006 4 FE38 8007

0 Bit 22 7 FE38 8004 4 FE38 8005

0 N/A Bit 21 8 N/A N/A

N/A Bit 20 8 N/A N/A

Section 5: Interface Options

Data broadcasting

5-44 V452 User Guide

The following instructions would set up and enable the VME
Slave interface and data broadcasting for Board #2:

moveb #0x00, 0xFE38800E | Set bit A31 to "0"
moveb #0x00, 0xFE3A000E | Set bit A30 to "0"
moveb #0x00, 0xFE3A000D | Set bit A29 to "1"
moveb #0x00, 0xFE3A000A | Set bit A28 to "0"
moveb #0x00, 0xFE3A0008 | Set bit A27 to "0"
moveb #0x00, 0xFE38800D | Set bit A26 to "0"
moveb #0x00, 0xFE38800A | Set bit A25 to "1"
moveb #0x00, 0xFE388008 | Set bit A24 to "0"
moveb #0x00, 0xFE388006 | Set bit A23 to "0"
moveb #0x00, 0xFE388004 | Set bit A22 to "0"
moveb #0x0F, 0xFE384003 | Enable VME Slave interface
moveb #0x00, 0xFE38C009 | Enable data broadcasting

➎ Configure Board #3 — Even though it has only 16 MB of on-
board DRAM, Board #3 would also need to be set to a 32 MB
boundary, in this case 2600 0000, which would require the
register configuration shown below:

Slave base address configuration — BOARD #3 (SAMPLE)

Write in 3 most
significant hex digits of
desired VME Slave base

address 1

Write binary
equivalent

of each digit
2

VME
address

bit

To set this bit
to "0" write

to:

To set this bit
to "1" write

to:

Most significant hex digit 0 Bit 31 FE38 800E 4 FE38 800F
0 Bit 30 FE3A 000E 4 FE3A 000F

2 1 Bit 29 FE3A 000C 4 FE3A 000D

0 Bit 28 FE3A 000A 4 FE3A 000B
2nd most significant hex digit 0 Bit 27 FE3A 0008 4 FE3A 0009

1 Bit 26 FE38 800C 4 FE38 800D

6 1 Bit 25 FE38 800A 4 FE38 800B

0 Bit 24 5 FE38 8008 4 FE38 8009
3rd most significant hex digit 0 Bit 23 6 FE38 8006 4 FE38 8007

0 Bit 22 7 FE38 8004 4 FE38 8005

0 N/A Bit 21 8 N/A N/A

N/A Bit 20 8 N/A N/A

Section 5: Interface Options

Data broadcasting

V452 User Guide 5-45

The following instructions would set up and enable the VME
Slave interface and data broadcasting for Board #3:

moveb #0x00, 0xFE38800E | Set bit A31 to "0"
moveb #0x00, 0xFE3A000E | Set bit A30 to "0"
moveb #0x00, 0xFE3A000D | Set bit A29 to "1"
moveb #0x00, 0xFE3A000A | Set bit A28 to "0"
moveb #0x00, 0xFE3A0008 | Set bit A27 to "0"
moveb #0x00, 0xFE38800D | Set bit A26 to "1"
moveb #0x00, 0xFE38800B | Set bit A25 to "1"
moveb #0x00, 0xFE388008 | Set bit A24 to "0"
moveb #0x00, 0xFE388006 | Set bit A23 to "0"
moveb #0x00, 0xFE388004 | Set bit A22 to "0"
moveb #0x0F, 0xFE384003 | Enable VME Slave interface
moveb #0x00, 0xFE38C009 | Enable data broadcasting

Note The instructions shown on the previous
sample code listing include lines to con-
figure register locations to hold a binary
“0” value. These instructions are required
only if the state of these bits have been
previously changed from the default “0”
condition. For the sake of modularity,
however, it may still be advisable to
include an instruction for each address
bit as shown in these samples.

Section 5: Interface Options

Data broadcasting

5-46 V452 User Guide

Section 5: Interface Options

VME Master interface

V452 User Guide 5-47

VME Master interface

The V452 Series provides a full VME Master interface that supports
A16, A24, and A32 addressing, and D8, D16, or D32 data widths.

Note Whenever an external VMEbus Master
writes to a portion of the V452 Series
memory that is being cached by the on-
board CPU, a cache-to-memory inco-
herency condition is possible that could
result in a loss of data. For a discussion of
these cache coherency considerations
and a summary of some useful cache
management techniques, refer to the
applicable CPU chapter in Section 4.

Setting up the Master interface
When multiple CPU boards want control of the VMEbus, a detailed set
of arbitration rules and conditions dictate how bus mastership is
determined. V452 Series boards provide several configurable options
that allow you to organize how the V452 Series board fits into this
larger VMEbus arbitration scheme.

Setting the VMEbus request level

The VME interface on V452 Series boards can request access to the
VMEbus at four different priority levels from lowest (level 0) to highest
(level 3) priority. This request level operates in conjunction with the
request/release methods (ROR, RWD or FAIR) to pinpoint the specific
bus arbitration position of a specific board.

Section 5: Interface Options

VME Master interface

5-48 V452 User Guide

To set the bus request level, configure pins 5-10 on the JK17 jumper as
shown in the figure below:

5 6

7 8

9 10

No jumper = software control of bus request level

5 6

7 8

9 10

5 6

7 8

9 10

5 6

7 8

9 10

Level 0 Level 1 Level 2 Level 3

Bus request level jumper settings (JK17)

Note If none of the shunt configurations shown
above is in place, the Ethernet/VMEbus
control register takes over to set the bus
request level (default = Level 3).

Primary Control register

The remaining bus control functions are set via the Primary Control
register. The location pertaining to the Master interface configuration
are listed in the table below:

Primary Control register — Master interface functions

Address Function Description
FE38 C000 ROR release Select Release on Request bus request handling. (default)
FE38 C001 RWD release Select Release When Done bus request handling.
FE38 C002 non-FAIR requests Selects non-FAIR (normal) bus release handling. (default)
FE38 C003 FAIR requests Select FAIR bus release handling.

Note The V452 Series Control register circuitry
decodes only the address lines of all
write accesses. As a result, the data that
is actually written into the register DOES
NOT matter. A write access using any
data is all that is required.

Section 5: Interface Options

VME Master interface

V452 User Guide 5-49

FAIR vs non-FAIR bus requests

V452 Series boards support FAIR and non-FAIR bus requester as
described below:

FAIR bus request — gives all Masters on the VMEbus an equal
share of the overall bus bandwidth.
If enabled, the FAIR requester circuitry on each participating
Master does not allow its own Master to request control of the
data transfer bus until all other Masters on the same VMEbus
request level (as described in the paragraphs above) have had
control of the bus. In other words, the FAIR requester does not
issue a bus request until no other Master is requesting control of
the bus.
For FAIR bus requests to work, ALL DEVICES on the same bus
request level must use it. The net effect of this scheme is to
force Masters that frequently need/request the bus or are closer
to the System Controller’s arbiter in the daisy-chain to allow
equal bus access by other Masters that may request the bus less
often or are further away from the arbiter in the daisy-chain.
Enabling the FAIR requester is independent of the priority or
round-robin request scheme set by the System Controller. The
FAIR request scheme applies only to Masters on the same VME
request level. As a result, it is possible to configure a system
where the Masters on one level use FAIR requests while Masters
on other levels use either the priority or round-robin schemes
from the System Controller to manage bus requests.
To implement FAIR requests across the entire VMEbus system, it
is best to configure all Masters to use FAIR bus requests on the
same request level.
Boards that observe the FAIR request scheme can be used with
boards not supporting it, if the boards that do not support FAIR
requests are programmed to use only a small percentage of the
VMEbus bandwidth. Non-FAIR request boards can also be
assigned a priority level lower than the level used by the FAIR
request boards.

Non-FAIR bus request (default) — with the FAIR request option
OFF Masters compete for the bus on either a straight priority or
round-robin basis as determined by the System Controller. For
more information about the meaning of these terms, see the
System Controller chapter in this section.

Section 5: Interface Options

VME Master interface

5-50 V452 User Guide

In the default condition, the FAIR bus request scheme is not active. To
direct the V452 Series board to use FAIR bus requests, execute the
following 680x0 assembler command:

moveb #0x00, 0xFE38C003

To return of non-FAIR bus requests, either reset the board or execute
the following 680x0 assembler command:

moveb #0x00, 0xFE38C002

ROR vs. RWD bus release

When the board attempts to access VME address space, a request for
control of the VMEbus is made to the VME Arbiter. The VMEbus
requester on V452 Series boards can be configured to use on of the
following two bus release methods:

Release On Request (ROR) default — requests and holds the
VMEbus until it senses another VMEbus Master making a bus
request. The ROR bus requester minimizes VMEbus arbitration
overhead in a system transferring bursts of data.

Release When Done (RWD) — requests and then releases the
VMEbus immediately after completing the VME transfer.

The desired request method is set by writing to the Extended Control
register at 0xFE38 0000 or 0xFE38 0001.

In the default condition, Release on Request (ROR) is selected. To
select Release When Done (RWD), execute the following 680x0
assembler command:

moveb #0x00, 0xFE38C001

To return to ROR requests, either reset the board or execute the follow-
ing 680x0 assembler command:

moveb #0x00, 0xFE38C000

Section 5: Interface Options

VME Master interface

V452 User Guide 5-51

VME Master data transfer bandwidth
After the V452 Series board acquires the VMEbus, a V452 Series
making standard (non-BLT) VME Master accesses has a data transfer
bandwidth that can be calculated from the following formula:

Xfer in MB/sec = Bytes-per-xfer * 1000
 55 + X + (4 * C)

where:
• Bytes-per-Xfer = Transfer data width (e.g., 4 for a 32-bit transfer)
• X = Slave access time in nanoseconds
• C = CPU clock cycle time in ns (e.g., 40 for a 25 MHz CPU)

A 25 MHz V452 Series accessing a Slave with an access time (Address
Strobe to Ack Time) of 100 ns, has a cycle time of 315 ns, for a
bandwidth of approximately 12 MB/sec, assuming 32-bit transfers.

Note The initial arbitration time for the
VMEbus is ignored in the above
equation.

If the CPU (rather than a DMA device) is doing a VME transfer, the
overhead of accessing the local memory must be added to the denomi-
nator of the above equation. On average, it takes 1.5 clock cycles to
fetch a word from memory and 1.4 clock cycles to write a word to
memory. Of course, there is also instruction fetch time to consider too,
but you can normally arrange to have the instructions for a block copy
routine in CPU cache. So for the 25 MHz example above we have to
add 1.5 * 40 = 60 ns to the 315 ns, for a cycle time of 375 or a sus-
tained bandwidth of about 10.4 MB/sec transferring data from on-board
memory to VME.

The 10.4 MB/sec value represents the bandwidth for random access to
the VMEbus. Blocks of data can be transferred at over 60 MB/sec with
DMA-assisted BLT as described in the next section.

Section 5: Interface Options

VME Master interface

5-52 V452 User Guide

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-53

VME Master BLT

V452 Series boards support 32-bit Master BLT with DMA (BLT32) that
provides the following features:

32-bit DMA
up to 40 MB/sec transfer rate (30 MB/sec typical)
Transfer lengths from 8 to 1024 bytes.

V452 Series boards also support 64-bit Master BLT with DMA (BLT64)
that provides the following features:

64-bit DMA
up to 80 MB/sec transfer rate (60 MB/sec typical)
Transfer lengths from 16 to 2048 bytes.

Performing DMA block transfers increases performance over normal
data transfers for data lengths greater than 20 bytes for BLT32 transfers
or 40 bytes for BLT64 transfers.

Note A complete C-language example for both
BLT32 and BLT64 block transfers can be
found in the Block Transfer (BLT) with
DMA example chapter in the Code
Examples section.

Section 5: Interface Options

VME Master BLT

5-54 V452 User Guide

Block transfer strategy
The V452 Series BLT DMA is a simple DMA finite state machine
designed for speed and flexibility. The following design characteristics of
the V452 Series BLT engine effects the design of the software for
performing BLT transfers.

Data blocks for BLT32 transfers must be at least 8 bytes in
length and must be aligned on 4-byte boundaries. Data blocks
for BLT64 transfers must be at least 16 bytes in length and must
be aligned on 8-byte boundaries.

Data blocks for both BLT32 and BLT64 transfers must be
partitioned to observe page boundaries on both the target and
source system.

Because BLT64 transfers twice as much data as BLT32, the byte
counter in the BLT software module should divide the requested
transfer count by two before performing a BLT64 transfer.
Doing so allows calling routines to use the same unit for the
transfer count (i.e., a byte) for both BLT32 and BLT64 transfers.

These characteristics suggest the adoption of a particular strategy for
implementing BLT transfers on V452 Series boards as described in the
table and figure below:

Data block characteristics

Data Characteristics Transfer type

Head Manual (non-BLT) — If the first few bytes of a block to be transferred
are not located on the 4 byte (BLT32) or 8-byte(BLT64) boundary the
unaligned data must be transferred using a non-BLT transfer. The BLT
software must look at the head portion of the data block to be transfer–
red, identify the first portion of the block that is properly aligned and
transfer the unaligned portion manually.

Body BLT Loop — The main portion of the data block is transferred using a
BLT loop. However, the BLT software must ensure that the transferred
blocks do not cross any page boundaries either on the source or the
target. This block partitioning can be accomplished by finding the amount
of data area to the next page boundary on both the source and target
and then partitioning the next block transfer to be equal to the size of the
lesser of these two areas. Applying this algorithm to each cycle of the
BLT transfer loop ensures that data is never read from the source or
written to the target across a page boundary.

Tail Manual (non-BLT) — If the BLT loop process fails to transfer all of the
data because the tail portion of the data block contains less than the
minimum number of bytes (i.e., 8 for BLT32 or 16 for BLT64), then the
BLT software must transfer these remaining bytes of data manually.

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-55

Head
Unaligned data at the
beginning of the block

Body
Aligned portion of the block

Transferred "manually"
(non-BLT)

Transferred as a
series of partitioned
data blocks

Tail
Remaining data that is too

short to be block transferred.

Transferred "manually"
(non-BLT)

Data characteristics Transfer type

BLT transfer strategy

Using the MOVES instruction
V452 Series BLT transfers use the CPU’s MOVES instruction to activate
the BLT DMA engine. As a result, the CPU must be operating in
Supervisor mode to perform BLTs to/from either Supervisor or User
memory space.

Due to problems within the ‘040/’060
chip itself, the MOVES instruction cannot
be used to access virtual addresses that
are mapped by the Paged MMU. For
some reason, the MMU is unable to
translate MOVES accesses appropriately.
As a result, all MOVES accesses must be
made to the actual physical address
whenever the MMU is turned on.

Section 5: Interface Options

VME Master BLT

5-56 V452 User Guide

Before MOVES can be used, the CPU’s internal Source and Destination
function code registers (SFC and DFC) also must be set up to indicate
whether a Supervisor or User BLT is desired. The sequence shown
below sets up BLTs to/from Supervisor space by writing a 4 to the SFC
and DFC registers:

moveq #0x04, d0 | 04 value sets up supervisor BLT
movc d0, sfc | write d0 to Source FC register
movc d0, sdc | write d0 to Destination FC register

To set up BLTs for transfers to/from User space, replace the first line of
the previous instruction sequence with the following instruction which
writes a 0 to the SFC and DFC registers:

moveq #0x0, d0 | 0 value sets up user BLT

Note The SFC and DFC registers retain the en-
tered value until changed or reset. The
SFC and DFC set-up sequence given
above is only required for the initial setup
or to change the type of transfer desired
(i.e., to/from Supervisor vs. User memory
space). Take care not to allow an inter-
rupt service routine to change the value
of the SFC and DFC registers during a
BLT transfer.

Using the MOVES instruction eliminates any possible interference be-
tween the BLT transfer and the operation of the CPU’s internal caches.
This allows the caches to remain operational during the BLT. Keeping
the caches enabled during BLT transfers is desirable, because the CPU
can continue to execute code from the cache during transfers (even if
it’s only activity is processing the loop of BLT transfers).

Because the BLT DMA engine re-enables interrupts after each individual
transfer, the CPU can also service interrupts between BLT transfers,
even when the loop or in-line routine is executing nothing but
continuous BLT transfers.

DMA block transfer cycle
Given the transfer strategy outlined above, the required steps in a
typical DMA block transfer can be depicted in the figure below and
described in the paragraphs to follow:

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-57

➊ Check that the target and source are correspondingly aligned.
(For example, if the first byte for the source of the transfer is a
byte 3, the first byte for target must be either and byte 3 or 7.)

➋ Use the MOVEB instruction to transfer odd bytes at the head of
the data block (if necessary) to achieve proper 4-byte (BLT32) or
8-byte (BLT64) alignment for block transfers.

➌ Determine the data area to the next page boundary on both the
target and source. Partition the data for block transfer to be
equal the size of the lesser of these two areas to avoid
overrunning a page boundary on either the source or
destination.

➍ Perform the block transfer for the next partitioned data block.
Check for and report a transfer error (if desired).

Note The specific instructions required to do
this step are described in greater detail
below.

➎ Adjust transfer counters and addresses to reflect the number of
bytes transferred.

➏ If there are enough bytes in the data block to continue block
transfers (i.e., at least 8 for BLT 32 or 16 for BLT64), return to
Step ➌ otherwise go to next step.

➐ If any bytes remain in the data block that are too few to be block
transferred, use the MOVEB instruction to transfer these trailing
bytes.

BLT Reads from VME

The paragraphs below describe in detail the specific instruction required
to perform an individual Read block transfer of a properly partitioned
block of data.

This sample code presumes that the
CPU’s MMU is OFF during the BLT
transfer. Contact Synergy customer
service for application notes describing
how to perform BLT transfers while the
MMU is ON.

All of individual task and instructions described below are required to
accomplish Step ➍ of the block transfer cycle described above.

Section 5: Interface Options

VME Master BLT

5-58 V452 User Guide

➍a Set the count and transfer width (and inhibit interrupts) — The
count in bytes (BLT32) or words (BLT64) is set by writing to the
count register at:

• 0xFE60 0000 for BLT32,
• 0xFE60 0020 for BLT64.

Writing to the counter register also inhibits interrupts which is
required because the three accesses that set up the DMA engine
must be done without interruption.

Because the BLT is done in longwords (BLT32) or double long-
words (BLT64), the count is truncated into even multiples of
either 4 (BLT32) or 8 (BLT64). The minimum count is either 8
(BLT32) or 16 (BLT64).
The VME spec states that BLT32 should not cross any 256 byte
(0x100) boundaries and that BLT64 should not cross any 2048
byte (0x400) boundaries.
However, the BLT logic on V452 Series boards is capable of
individual BLT32 transfers up to 1024 bytes (0x400) and
individual BLT64 transfers up to 2048 bytes (0xFF0) if desired. In
either case, the transfer should not cross any 2048 byte
boundary.
The count must appear in bits 9-0 of the register which should
be accessed as a longword. Bits 0 and 1 of the count register
are ignored. Bits 10-31 are reserved and should be set to zero.
Setting the count arms the DMA logic. The next MOVES
instructions must be a read from VME and a write to local RAM.

➍b Execute a miscellaneous instruction — Executing a “do nothing”
instruction here is required to ensure that any impending
interrupt is handled before the next step. The MOVE instruction
shown in the instruction summaries on the next page provide
the necessary pause but execute slightly faster than using the
customary NOP instruction.

➍c Set the VME beginning address and direction — The VME
beginning address and direction is set by using the MOVES
instruction to read a longword from the first location of the VME
region to be transferred.

➍d Set the local RAM beginning address — The local RAM begin-
ning address is set by using the MOVES instruction to write the
longword read in step ➍ c from the VME to the first location of
the local RAM region to be transferred.
Once the above setup has been done, the DMA engine
performs the block transfer. The execution of the transfer is
invisible to the program. After the block transfer is complete,
interrupts are automatically re-enabled.

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-59

➍e Check for successful completion (optional) — If an error occurs
in the individual BLT transfer, the V452 Series reports the error in
Data bit 4 of Status register (0xFE380002). A 1 in this position
indicates the BLT transfer was successful. A 0 indicates the BLT
DMA encountered a Bus Error.

Note If it encounters a Bus Error during a BLT
transfer, the DMA engine immediately
aborts the transfer.

BLT32 Read instruction summary — the following 680x0 code instruc-
tions are required to accomplish a BLT32 read:

MOVE.L Count to 0xFE600000 ; set BLT Start register (➍ a)
MOVE.L d0,d0 ; pause for a possible interrupt to be serviced (➍ b)
MOVES.L VME-Adr to register ; select VME address (➍ c)
MOVES.L register to RAM-Adr ; Setting the local RAM address starts xfer (➍ d)
BTST bit 4 of 0xFE380002 ; test BLT Error bit (➍ e)
BEQ Error-Routine ; handle error if needed (➍ e)

BLT64 Read instruction summary — the following 680x0 code instruc-
tions are required to accomplish a BLT64 read:

MOVE.L Count to 0xFE600020 ; set BLT Start register (➍ a)
MOVE.L d0,d0 ; pause for a possible interrupt to be serviced (➍ b)
MOVES.L VME-Adr to register ; select VME address (➍ c)
MOVES.L register to RAM-Adr ; Setting the local RAM address start s xfer (➍ d)
BTST bit 4 of 0xFE380002 ; test BLT Error bit (➍ e)
BEQ Error-Routine ; handle error if needed (➍ e)

Note To allow a calling routine to specify the
count in bytes regardless of whether a 34
or 64-bit transfer is to be used, the
following instruction (which shifts the
count value given in bytes to words) can
be inserted at the beginning of the BLT64
read routine shown above:

lsrl #1, count

BLT Writes to VME

The paragraphs below describe in detail the specific instruction required
to perform an individual Write block transfer of a properly partitioned
block of data.

Section 5: Interface Options

VME Master BLT

5-60 V452 User Guide

This sample code presumes that the
CPU’s MMU is OFF during the BLT
transfer. Contact Synergy customer
service for application notes describing
how to perform BLT transfers while the
MMU is ON.

The tasks and instructions described below are required to accomplish
Step ➍ of the block transfer cycle described earlier in this chapter.

➍a Set the count and transfer width (and inhibit interrupts) — The
count in bytes (BLT32) or words (BLT64) is set by writing to the
count register at:

• 0xFE60 0000 for BLT32
• 0xFE60 0020 for BLT64

Writing to the counter register also inhibits interrupts which is
required because the three accesses that set up the DMA engine
must be done without interruption.

Because the BLT is done in longwords (BLT32) or double long-
words (BLT64), the count is truncated into even multiples of
either 4 (BLT32) or 8 (BLT64). The minimum count is either 8
(BLT32) or 16 (BLT64).
The VME spec states that BLT32 should not cross any 256 byte
(0x100) boundaries and that BLT64 should not cross any 2048
byte (0x400) boundaries. However, the BLT logic on V452 Series
boards is capable of BLT32 transfers up to 1024 bytes (0x3FC)
and BLT64 transfers up to 2048 bytes (0xFF0) if desired. In either
case, the transfer should not cross any 2048 byte boundary.
The count must appear in bits 9-0 of the register which should
be accessed as a longword. Bits 0 and 1 of the count register are
ignored. Bits 10-31 are reserved and should be set to zero.
Setting the count arms the DMA logic. The next two MOVES
instructions must be a read from VME and a write to local RAM.

➍b Execute a miscellaneous instruction — Executing a “do nothing”
instruction here is required to ensure that any impending
interrupt is handled before the next step. The MOVE instruction
shown in the instruction summaries on the next page provide
the necessary pause but execute slightly faster than using the
customary NOP instruction.

➍c Read the 1st RAM location — Reading the first longword of the
transfer into a CPU register to prepares for the first VME write.

➍d Set the VME beginning address and direction — The VME
beginning address and direction is set by using the MOVES

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-61

instruction to write the longword read in Step ➍c to the first
location of the VME region to be transferred.

➍e Execute a NOP — Executing a instruction here synchronizes
68060’s write pipeline.

➍f Set the Local RAM beginning address — The local RAM begin-
ning address is set by using the MOVES instruction to read a
longword from the first location of the local RAM region to be
transferred.
Once the above setup has been done, the DMA engine
performs the block transfer. The execution of the transfer is
invisible to the program. After the block transfer is complete,
interrupts are automatically re-enabled.

➍g Check for successful completion (optional) — If an error occurs
in the individual BLT transfer, the V452 Series reports the error in
Data bit 4 of Status register (0xFE380002). A 1 in this position
indicates the BLT transfer was successful. A 0 indicates the BLT
DMA encountered a Bus Error.

Note If it encounters a Bus Error during a BLT
transfer, the DMA engine immediately
aborts the transfer.

BLT32 Write instruction summary — the following 680x0 code instruc-
tions are required to accomplish a BLT32 read:

MOVE.L Count to 0xFE600000 ; set BLT Start register (➍ a)
MOVE.L d0,d0 ; pause for a possible interrupt to be serviced (➍ b)
MOVE.L RAM-Adr to register ; get 1st longword from DRAM (➍ c)
MOVES.L register to VME-Adr ; select VME address (➍ d)
NOP ; synchronize 68060 write pipeline (➍ e)
MOVES.L RAM-Adr to register ; Set the local RAM address starts transfer (➍ f)
BTST bit 4 of 0xFE380002 ; test BLT Error bit (➍ g)
BEQ Error-Routine ; handle error if needed (➍ g)

BLT64 Write instruction summary — the following 680x0 code instruc-
tions are required to accomplish a BLT64 read:

Section 5: Interface Options

VME Master BLT

5-62 V452 User Guide

MOVE.L Count to 0xFE600020 ; set BLT Start register (➍ a)
MOVE.L d0,d0 ; pause for a possible interrupt to be serviced (➍ b)
MOVE.L RAM-Adr to register ; get 1st longword from DRAM (➍ c)
MOVES.L register to VME-Ad ; select VME address (➍ d)
NOP ; synchronize 68060 write pipeline (➍ e)
MOVES.L RAM-Adr to register ; Setting the local RAM address starts transfer (➍ f)
BTST bit 4 of 0xFE380002 ; test BLT Error bit (➍ g)
BEQ Error-Routine ; handle error if needed (➍ g)

Note To allow a calling routine to specify the
count in bytes regardless of whether a 34
or 64-bit transfer is to be used, the
following instruction (which shifts the
count value given in bytes to words) can
be inserted at the beginning of the BLT64
write routine shown above:

lsrl #1, count

Operational considerations
Because block transfers use all available memory bandwidth, the CPU
cannot access memory directly until a transfer is done. However, the
following features mitigate the effects of any delay:

DMA BLT transfers occur very quickly. For example, assuming
the largest allowed BLT transfer of 256 bytes is transferred at
40 MB per second, memory is tied up for only 6.4 µs.
During a transfer, the CPU can continue to execute out of its
internal caches.

An advantage of tying up the CPU board’s data bus during the BLT
transfer is that no programming is required to detect completion of the
BLT transfer. Even a hundred BLTs in a row execute as fast as the trans-
fer rate allows.

V452 Series include special features using one of the counters (82C54)
allowing an EZ-bus Master to operate the V452 Series BLT DMA engine
while protecting a percentage of the local bus bandwidth for the V452
Series on-board CPU(s). For more information, about this feature, refer
to the Timers & counters chapter in Section 4.

Section 5: Interface Options

VME Master BLT

V452 User Guide 5-63

Using Counter 2 (82C54) as a BLT Throttle

While BLT DMA transfers are in progress, the V452 Series boards
normally yield the entire local bus bandwidth to service the transfer. For
transfers being controlled by an on-board CPU, this approach provides
the fastest possible BLT DMA transfer rates without significantly
compromising the CPU because it is busy managing the transfer and
can effectively execute out of its own internal caches.

However, the V452 Series boards can also provide a special feature,
using Counter 2 of the 82C54, to allow the on-board CPU(s) to perform
local bus operations while an external processor performs BLT DMA
transfers at the same time.

Such a concurrent processing arrangement can be achieved using the
V452 Series board and an EZ-bus module that contains its own
processor or intelligent DMA chip which can be programmed to oper-
ate the motherboard’s BLT DMA engine.

Without some way to limit or throttle the bandwidth usage of the BLT
transfer, however, having the intelligent EZ-bus module manage BLT
DMA transfers on the V452 Series board might lock the on-board
CPU(s) off its own local bus. Counter 2 of the 82C54 (whose count is
available to the intelligent daughter module via pin D7 (CntC\) on the
P4 EZ-bus connector) provides a local bandwidth throttle as described
below.

Whenever a BLT DMA is in progress, circuitry on the V452 Series board
gates off or freezes Counter 2. As soon as an individual transfer ends,
this circuitry frees Counter 2 to start counting. By programming the
intelligent EZ-bus module to pause for a certain number of counts
before starting the next BLT transfer, Counter 2 can open a variable-
length, bandwidth window for local bus operations by the on-board
CPU(s) while the EZ-bus module performs BLT DMA transfers.

The BLT throttling features of Counter 2 cause it to operate in a non-
continuous fashion whenever BLT DMA transfers are in use. If you need
continuous counting operations lasting more than the duration of a
single BLT DMA transfer, consider using another 82C54 counter or one
of the 2692 timers.

Note For more information about using the
82C54 counters, refer to the Timers &
counters chapter in Section 4.

Section 5: Interface Options

VME Master BLT

5-64 V452 User Guide

Cache coherency considerations

After completion of a BLT read transfer into the board’s memory that is
subsequently manipulated by another processor, a mismatch may be
present between memory and the CPU’s data cache. As a result, it is
important to ensure that accesses to the transferred data take place in
memory rather than to the CPU’s data cache.

For information about other cache management techniques, see the
applicable CPU chapter in Section 4.

Section 5: Interface Options

System Controller

V452 User Guide 5-65

System Controller

The V452 SBC configures itself automatically as the VMEbus System
Controller when it is plugged into Slot 1 of the VME cardcage. The
System Controller circuitry has been carefully isolated on the board so
that it can continue to function in the unlikely event of a failure
elsewhere on the board. The System Controller circuitry provides the
following functions:

Four-level arbiter — provides either Priority or Round robin bus
arbitration.

IAck generation — receives the wired-or VMEbus IAck signal and
drives the daisy-chained IAck-In IAck-Out signals.

Bus error timeout — generates a bus error time-out signal if one
or both of the VMEbus data strobes remain asserted for longer
than a specific interval that can be set under software control.

System reset generator — generates a VMEbus reset signal upon
system power-up, upon a board-level reset, and 100
microseconds after the VME ACFail signal is asserted.

System clock generator — drives the VMEbus SysClk line from
an on board 16-MHz oscillator with buffer drivers. (Only one
card is allowed to drive the VME SysClk line.)

Note Install the board in the highest priority
slot (normally Slot 1) if it is to provide any
of the above functions. For more
information, see the board installation
chapters in Getting Started.

Section 5: Interface Options

System Controller

5-66 V452 User Guide

Forcing system controller disabled
The system controller can be forced disabled in case other system
boards cause interactions with the V452’s auto-configuration circuits.
To disable the system controller, install a shunt across pins 15 and 16 of
jumper JK17 as shown in the figure below. Remove this shunt to allow
operation as system controller.

15 16
System Controller Force Disable

No jumper = Auto System Controller Enabled

Jumper settings (JK17) — System Controller disable

Only one bus arbiter can be in use at any one time. When the System
Controller circuitry is active, the timeout generator drives the VME BErr\
line on the bus.

Configuring the bus arbiter
One of the System Controller’s main tasks is to establish and manage
bus arbitration. The V452 has three arbiter configurations:

Four-level Priority arbitration — grants control of the VMEbus
based on the Master VMEbus request level of 0 to 3 with three
being the highest priority and 0 being the lowest.
In this configuration the arbiter grants the bus to Masters at the
higher level. (For more information about VMEbus request levels,
refer to the VME Master interface chapter in this section.)

Four-way Round Robin arbitration — grants equal priority to all
bus request levels by sampling each bus level on a rotating basis.
In the Round Robin configuration the arbiter grants the bus on a
rotating basis. When the current Master in control of the bus
relinquishes it, the arbiter looks for a request at the next level.
When a request is not pending at a certain level, the arbiter skips
that level and moves on to the next.

Section 5: Interface Options

System Controller

V452 User Guide 5-67

Single-level arbitration — can be used by selecting priority arbi-
tration and jumpering all boards to the same bus request level.
This is possible with either the Priority or Round Robin modes.

To select Round Robin request handling, install a shunt across jumper
JK17 pins 13 and 14 as shown in the figure below. Remove this shunt
(or leave off) to select Priority handling.

13 14Round Robin Enable
No jumper = Priority Arbitration

Jumper settings (JK17) — Round Robin vs. Priority requests

VMEbus arbitration timeout

The VMEbus arbitration circuitry includes an automatic arbitration
timeout period of 10 µsecs. This feature stops the VMEbus from locking
up in the event of delayed bus arbitration cycle.

Configuring the bus error timeout interval
V452 Series boards generate a bus error timeout signal if one or both of
the VMEbus data strobes remain asserted for longer than a specified
timeout interval. The default timeout interval that is set after a power-
cycling or reset is 32 µs. The slower intervals allow the V452 Series
board to accommodate slower systems. The “Never” setting, which
allows a bus error to “hang” the bus, is normally only useful in system-
level debugging situations.

The table below lists the timeout intervals and the corresponding
Extended Control register write addresses for each interval.

Extended Control register (FE3A 0000)

VME Access Timeout interval Extended Control register addresses to Write
32 µs (default) FE3A 0000 FE3A 0002

256 µs FE3A 0001 FE3A 0002
1 ms FE3A 0000 FE3A 0003

Never (do not assert timeout) FE3A 0001 FE3A 0003

Section 5: Interface Options

System Controller

5-68 V452 User Guide

For example, to set the timeout interval to be 256 µs, execute the
following two assembler instructions:

moveb #0x00, 0xFE3A 0001
moveb #0x00, 0xFE3A 0003

Note The V452 Series circuitry for the
Extended Control register decodes only
the address lines of all write accesses. As
a result, the data that is actually written
into the register DOES NOT matter. A
write access using any data is all that is
required.

Enabling VME SysFail interrupts
While serving as the System Controller, it may be helpful to interrupt
the System Controller board whenever one of the other boards on the
bus asserts SysFail. This feature allows the System Controller to be used
to restart and/or debug failed boards.

In the default configuration, the SysFail interrupt is disabled. Enabling it
is a two-step process:

➊ Enable the Level 7 interrupt group — V452 Series boards
assigns SysFail to the interrupt Level 7 interrupt group that also
includes the ACFail and parity error sources.
To enable these three sources as a group to interrupt CPU-X,
execute the following 680x0 assembler instruction:

moveb #0x00, 0xFE394001

To enable these three sources as a group to interrupt CPU-Y (on
dual-CPU V452 Series models only), execute the following
680x0 assembler instruction:

moveb #0x00, 0xFE39C001

Section 5: Interface Options

System Controller

V452 User Guide 5-69

Note The maskable Level 7 interrupt source
group described in the paragraphs above
is a steerable source. On dual-CPU V452
Series model boards steerable interrupt
sources can be assigned to either CPU
but not to serve as an interrupt source to
both CPUs at the same time. For more
information on steerable interrupt
sources, refer to the Interrupts chapter in
Section 3.

➋ Enable the SysFail interrupt — To enable the SysFail interrupt
(once the Level 7 interrupt group has been enabled), execute
the following 680x0 assembler instruction:

moveb #0x04, 0xFE28003B

To disable the SysFail interrupt, reset the board or execute the
following 680x0 assembler instruction:

moveb #0x04, 0xFE28003F

Section 5: Interface Options

System Controller

5-70 V452 User Guide

V452 User Guide 6-1

Code
 Examples

00001
00002
00003
00004

00001
00002
00003
00004 6

This section contains coding examples for selected components on
V452 Series boards and a summary description of important
programming differences between the V452 and other models of
Synergy CPU boards.

Programming differences

Block transfer (BLT) with DMA example

Flash EPROM programming tools

Timer code examples

2692 DUART code example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

6-2 V452 User Guide

Section 6: Code Examples

Programming differences

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-3

Programming differences

This chapter briefly lists the programming differences between the V452
SBC and other Synergy model SBCs.

If you have extensive experience with either the V20 or V30 series
product, it is suggested that you read this chapter to give you a better
idea as to how to program the V452 board.

1. 8-bit vs 32-bit PROM 1 is slower — The V20 and V30 series boards
use four EPROMs which provide significantly faster access time than a
single EPROM. Expect code in this EPROM to run 3-4 times slower.

2. No dynamic bus sizing to EZ-bus boards — Any EZ-bus modules that
require dynamic bus sizing will not work on the V452 Series boards.
Contact the factory for further information.

Any EZ-bus modules that use longword accesses to repeatedly access a
byte or word register will require code modification. The ESSE and ESPS
are two examples of this type of module. Contact the factory for further
information.

3. Added status reg bit for X/Y CPU detection — The addition of a
second CPU requires the code to be able to detect which CPU it is
running upon. The status register contains a bit with this information.

4. Auto System Controller (V451/V452 only) — The V452 SBC
configures itself automatically as the system controller when installed in
slot #1 of the VME cardcage. A jumper is provided to force the system
controller disabled in case other boards in the system interact with the
V452 auto-detection.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Programming differences

6-4 V452 User Guide

5. Software vs. jumper int enables — The V452 code must enable any
necessary interrupts by writing to the mode registers provided. The V20
and V30 series boards have hardware jumpers that require no software
initialization.

The interrupts may be steered to either of the two CPUs on a dual-CPU
board. Care must be taken in selecting the proper mode bits to enable
for the desired interrupts.

6. Software vs jumper VME slave addressing — The V452 code must
enable the VMEbus slave interface and set its address and mode by
writing to the mode registers provided. The V20 and V30 series boards
have hardware jumpers that require no software initialization.

7. TTR initialization to keep I/O from caching — The V452 code must
set up a Transparent Translation Register to cause onboard I/O to use
serialized non-caching accesses. The V20 and V30 series boards do not
have data cache, so this is not an issue with these products.

8. Cache control register bits are different — The 68040/68060 cache
control register uses different bits in the cache control register to enable
the instruction and data caches. Cache control code must be rewritten
when adapting V20 or V30 code to ‘040 or ‘060 based boards.

9. Memory Management Unit is different

10. Floating Point Unit is different (firmware transcendentals) — The
68881/2 FPU coprocessors used on the V20 and V30 series boards are
capable of computing transcendental functions (sin, cos, log...) while the
68040 and 68060’s built-in FPU is capable only of add, subtract,
multiply and divide. A software package available from Synergy
provides transcendental functions, and may be included in the system
boot EPROM or kernel to provide application code compatibility with
the 68881/2.

11. Snooping — The ‘040/’060 performs bus snooping to maintain
cache coherency between its internal caches and the external memory.
It is important to remember that strange software problems may be the
result of lack of cache coherency. Be especially careful with BLT
transfers, which are not snooped, and with DMA transfers.

Section 6: Code Examples

Block transfer (BLT) with DMA example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-5

Block transfer (BLT) with DMA
example

This chapter provides a C-language sample of the code required to
execute BLT64 and 32-bit Block Transfers with DMA support on V452
Series boards. An assembly language version of this transfer code is also
available if desired. Call Synergy customer service for machine-readable
copies of the C and/or assembly language versions.

This sample code presumes that the
CPU’s MMU is OFF during the BLT
transfer. Contact Synergy customer
service for application notes describing
how to perform BLT transfers while the
MMU is ON.

The portions of code in these examples that relate specifically to the
BLT read and write engines should be compiler-independent.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Block transfer (BLT) with DMA example

6-6 V452 User Guide

Note To execute a block transfer with DMA,
the CPU must use the MOVES instruction
and therefore must be in Supervisor
mode. Although it is in Supervisor mode,
the CPU can use the DMA engine to
move data to or from user space by
appropriately setting up the SFC and DFC
registers in the CPU. For more
information on setting up these registers
see the VME Master BLT chapter in
Section 5. For some operating systems,
the Supervisor requirement means that
block transfers must be done with a
system call. In this case, the CPU code
for the BLT must be part of the device
driver.

Section 6: Code Examples

Block transfer (BLT) with DMA example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-7

BLT module in C

/***
/*
/* v40 DMA Block Transfer Code Example -- (32bit, 64bit)
/* Copyright 1992 Synergy Microsystems, Inc
/*
/* ****
/*
/* Routines: blt
/*
/* Routine "blt" will move a block of RAM data to or from a correspondingly
/* aligned (long, double long) VME data location. The minimum transfer count
/* is either 8(BLT32) or 16(BLT64) bytes.
/* "blt" will partition a transfer so as not to violate local(1024) or
/* VME(256, 1024) byte page boundaries. Maximum performance is achieved when
/* both source and destination addresses are on (256, 1024) byte boundaries.
/* Otherwise, the partitions will vary according to worst case page boundary.
/* Odd bytes at the beginning (header bytes) and end (tail bytes) are moved
/* individually that otherwise could not be transferred through the BLT
/* mechanism.
/* ****
/* NOTE:
/* "blt" is structured so as to maintain all operations in CPU register
/* space in order to facilitate parallel cached operations during DMA block
/* transfers.
/* ****
/* Error checking is currently ENABLED. Throughput sensitive until next
/* rev.
/* ****
/* Measured Block32 transfer performance: approx. 26.5 Mbytes/sec
/* Measured Block64 transfer performance: approx. 59.1 Mbytes/sec
/*
/* -- S.I.
/**/
#define MMUBLT 1

/*
/* BLT32 stuff
*/
#define VPAGE 256 /* VME page boundary BLT 32 */
#define ALIGN 4 /* Transfer engine address alignment */
#define MCNT 8 /* Minimum transfer count */

/*
/* BLT64 stuff
*/
#define VPAGE64 1024 /* VME page boundary BLT 64 */
#define ALIGN64 8 /* BLT64 xfer engine address alignment */
#define MCNT64 16 /* Minimum transfer count for block64 */

/*
/* --- IO registers ---
*/
#define BL_BASE (*(volatile int *const)0xfe600000)

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Block transfer (BLT) with DMA example

6-8 V452 User Guide

BLT module in C (cont.)

/*BLT 32 control register */
#define BL_32 (*(volatile int *const)0xfe600010)
/*BLT 64 control register */
#define BL_64 (*(volatile int *const)0xfe600020)

/*Status register address */
#define BL_STAT (*(volatile unsigned char *const)0xfe380002)

/*
/* General stuff
*/
#define LPAGE 1024 /* Local page boundary */
#define BL_ERR 0x10 /* BLT error status mask */
#define ERROR -1
#define OK 0

/*
/* Macros
*/
#define MIN(a,b) (((a)<(b))?(a):(b)) /* Return minimum value */
#define is64(a) ((a & 0x80000000)) /* msbit signifies block64 */
#define isTrue(a) ((a & 0x7fffffff)) /* boolean for Write direction */

/*
/* blt
/* -- Block(32bit, 64bit) transfer routine.
/*
/* unsigned char *vme;
/* -- VME data address
/*
/* unsigned char *local;
/* -- Local data address (4,8)byte aligned with VME address. (see above)
/*
/* unsigned int count;
/* -- Count of data BYTES. Should be at least (8,16) bytes. (see above)
/*
/* unsigned int direction;
/* -- Direction of data, a boolean TRUE(nonzero) is transfer data TO VME.
/* -- Bit31 signifies blt64 as opposed to blt32
/*
/* Returns: 0 for o.k.
/* -1 for error */

int blt(vme,local,count,direction)
unsigned char *vme; /* VME address */
unsigned char *local; /* Local address */
unsigned int count; /* Number of transfer bytes */
unsigned int direction; /* Boolean for Write,~Read */
{
 register unsigned int tcnt,vb,lb,lcnt,Wdir,Ocnt;
 register unsigned char *vp,*lp;
unsigned SavCacr;

Section 6: Code Examples

Block transfer (BLT) with DMA example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-9

BLT module in C (cont.)

/* Attempt to use registers exclusively. */
 Wdir = direction; /* if true, write to VME */
 lcnt = count; /* Data byte count */
 lp = local; /* Local RAM pointer */
 vp = vme; /* VME pointer */
 Ocnt = 0; /* Odd data byte count */

#if MMUBLT
/*
/* Save and turn off data cache
*/
asm("nop");
asm(".short 0xF478"); /* cpusha, dc */
asm("movec cacr,d0");
asm("movel d0, %0": "r=" (SavCacr));
asm("andl #0x7FFFFFFF, d0"); /* data cache off */
asm("movec d0, cacr");

#else
/* -- Setup CPU for special move instuctions */

 asm("movel #4,d0"); /* Undefined half-fakee */
 asm("movec d0,sfc"); /* Force invalid cache tags for moves instruc */
 asm("movec d0,dfc"); /* and set fc for blt DMA mechanism */
#endif

/* Alignment check of Local to VME address
/* according to block64 or block32 */
if(is64(Wdir))
{
/* check alignment value for vme address with next double long word */

/* If not aligned, find number of Odd data bytes */
if((int)vp & (ALIGN64-1))
Ocnt = ALIGN64 - ((int)vp & (ALIGN64-1));

/* check that local ram, when adjusted with Odd data bytes */
/* is also aligned, if not, we cannot go further. */
if(((int)lp + Ocnt) & (ALIGN64-1))

return (ERROR); /* Cache state not restored */
}
else
{
/* check alignment value for vme address with next long word */

/* If not aligned, find number of Odd data bytes */
if((int)vp & (ALIGN-1))
Ocnt = ALIGN - ((int)vp & (ALIGN-1));

/* check that local ram, when adjusted with Odd data bytes */
/* is also aligned, if not, we cannot go further. */
if(((int)lp + Ocnt) & (ALIGN-1))

return (ERROR); /* Cache state not restored */
}

 /* "Manually" move any required header bytes to achieve alignment */
 if(Ocnt)

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Block transfer (BLT) with DMA example

6-10 V452 User Guide

BLT module in C (cont.)

 {
/* Check if write to VME or read from VME */
if (isTrue(Wdir))
for(; Ocnt > 0 ; Ocnt--,lcnt--) *vp++ = *lp++;

 else
for(; Ocnt > 0 ; Ocnt--,lcnt--) *lp++ = *vp++;

 }

if(is64(Wdir)) /* Block64 transfers */
{

while(lcnt >= MCNT64)
{
/* Determine number of bytes to next vme page boundry */
vb = ((~((int)vp) & (VPAGE64 - 4)) + 4);

/* Determine number of bytes to next local page boundry */
lb = ((~((int)lp) & (LPAGE - 4)) + 4);

/* Calculate the resulting block size */
/* from the minimum of next local page, vme page or */
/* number of remaining bytes */
tcnt = MIN(MIN(lb,vb), lcnt);

/* Adjust to word count, (64bit transfers) */
/* and guarantee proper alignment */
tcnt = (tcnt >> 1) & ~3;

if(isTrue(Wdir)) /* Block64 WRITE TO VME */
{

#if MMUBLT
Ocnt = *((unsigned int *)lp);
asm("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;

asm("movel d0,d0");
asm("movel %1,%0" : "=g" (BL_64) : "g" (tcnt));
asm("nop");
asm("movel %1,%0" : "=g" (*vp) : "g" (Ocnt));
asm("nop");
asm("movel %1,%0" : "=g" (Ocnt) : "g" (*lp));

#else
asm("movel %1,%0" : "=g" (BL_64) : "g" (tcnt));
asm("movel d0,d0");
Ocnt = *((unsigned int *)lp);
asm("movesl %1,%0" : "=g" (*vp) : "g" (Ocnt));
asm("nop");
asm("movesl %1,%0" : "=g" (Ocnt) : "g" (*lp));

#endif

Section 6: Code Examples

Block transfer (BLT) with DMA example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-11

BLT module in C (cont.)

/***********************************/
/* Block64 DMA WRITE */
/**********************************/

}
else /* Block64 READ FROM VME */
{

#if MMUBLT
asm("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;

asm("movel d0,d0");
asm("movel %1,%0" : "=g" (BL_64) : "g" (tcnt));
asm("nop");
asm("movel %1,%0" : "=g" (Ocnt) : "g" (*vp)) ;
asm("movel %1,%0" : "=g" (*lp) : "g" (Ocnt)) ;

#else
asm("movel %1,%0" : "=g" (BL_64) : "g" (tcnt)) ;
asm("movel d0,d0");
asm("movesl %1,%0" : "=g" (Ocnt) : "g" (*vp)) ;
asm("movesl %1,%0" : "=g" (*lp) : "g" (Ocnt)) ;

#endif

/***********************************/
/* Block64 DMA READ */
/**********************************/

}

/* check for BLT Error during DMA transfers */
/* Optional -- */
if(!(BL_STAT & BL_ERR))
return (ERROR); /* Cache state not restored */

tcnt <<= 1; /* Readjust to byte count */
vp += tcnt; /* Adjust address pointers */
lp += tcnt; /* */
lcnt -= tcnt; /* And adjust remaining byte count */

}
}
else /* Block32 transfer */
{

while (lcnt >= MCNT)
{

/* find space available to next page boundry */
vb = ((~((int)vp) & (VPAGE - 4)) + 4);
lb = ((~((int)lp) & (LPAGE - 4)) + 4);

/* Calculate the resulting block size from the minimum of */
/* next local page, vme page or number of remaining bytes */
/* and guarantee proper alignment */
tcnt = MIN(MIN(lb,vb), (lcnt & ~3));

if(isTrue(Wdir)) /* Block32 WRITE TO VME */
{

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Block transfer (BLT) with DMA example

6-12 V452 User Guide

BLT module in C (cont.)

#if MMUBLT
Ocnt = *((unsigned int *)lp);
asm volatile ("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;

asm volatile ("movel d0,d0");
asm volatile ("movel %1,%0" : "=g" (BL_32) : "g" (tcnt)) ;

asm volatile ("nop");
asm volatile ("movel %1,%0" : "=g" (*vp) : "g" (Ocnt)) ;
asm volatile ("nop");
asm volatile ("movel %1,%0" : "=d" (Ocnt) : "g" (*lp)) ;

#else
asm("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;
asm("movel d0,d0");
Ocnt = *((unsigned int *)lp);
asm("movesl %1,%0" : "=g" (*vp) : "g" (Ocnt)) ;
asm("nop");
asm("movesl %1,%0" : "=g" (Ocnt) : "g" (*lp)) ;

#endif

/***********************************/
/* Block32 DMA WRITE */
/**********************************/

}
else /* Block32 READ FROM VME */
{

#if MMUBLT
asm("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;

asm("movel d0,d0");
asm("movel %1,%0" : "=g" (BL_32) : "g" (tcnt)) ;

asm("nop");
asm("movel %1,%0" : "=g" (Ocnt) : "g" (*vp)) ;
asm("movel %1,%0" : "=g" (*lp) : "g" (Ocnt)) ;

#else
asm("movel %1,%0" : "=g" (BL_BASE) : "g" (tcnt)) ;
asm("movel d0,d0");
asm("movesl %1,%0" : "=g" (Ocnt) : "g" (*vp)) ;
asm("movesl %1,%0" : "=g" (*lp) : "g" (Ocnt)) ;

#endif

/***********************************/
/* Block32 DMA READ */
/**********************************/

}

/* check for BLT Error during DMA transfers */
/* Optional -- */
if(!(BL_STAT & BL_ERR))
return (ERROR); /* Cache state not restored */

vp += tcnt; /* Adjust address pointers */
lp += tcnt; /* */
lcnt -= tcnt; /* And adjust remaining byte count */

}
}

Section 6: Code Examples

Block transfer (BLT) with DMA example

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-13

 /* "Manually" move odd tail bytes by hand */
 if(lcnt)
 {

if(isTrue(Wdir))
for(; lcnt > 0 ; lcnt--) *vp++ = *lp++;

 else
for(; lcnt > 0 ; lcnt--) *lp++ = *vp++;

 }

#if MMUBLT
/*
/* Restore data cache
*/
asm("movel %0, d0":: "r" (SavCacr));
asm("movec d0, cacr");

#endif

 return(OK);
}

Section 6: Code Examples

Flash EPROM programming tools

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-15

Flash EPROM programming tools

This chapter provides a C-language code modules that can be used to
erase, write, and verify data on Flash EPROM devices that are installed
in PROM sockets 0 and/or 1 on V452 Series boards.

Note For more information, see the EPROM
chapter in Section 4.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Flash EPROM programming tools

6-16 V452 User Guide

/**
/*
/* flashTools for Synergy boards
/*
/* Contains routines for programming and erasing FLASH ROMs using Intel Quick-Pulse Programming Algorithm
/* -- Modified to accomodate 28f020
/* -- Invoke doFlash() for full test
/* -- supports Intel and AMD
/*
/* -- S.I.
/* Synergy Microsystems (c) Copyright 1993
/** */
#include "../CSTUFF/cstuff.h"

typedef int status;

#define OK 0
#define ERROR -1

#ifdef V400
/* Define for access to single byte wide ROM */
typedef unsigned char accessType;
#define NUM_ROMS 1
#define JMPR_STRG "<JK17 1-3>"
#define BRD_STRG "V400"
#else
/* Define for access to four byte wide ROMs */
typedef unsigned accessType;
#define NUM_ROMS 4
#define JMPR_STRG "<JG19 7-8>"
#define BRD_STRG "V30"
#endif

/* Timeout constants to be used with Fdelay() w/ data cache OFF */
#define uSEC6 1 /* 6 microsecond constant */
#define uSEC10 2 /* 10 microsecond constant */
#define mSEC10 95 /* 10 millisecond constant */

#define INTEL_MAN_CODE ((accessType)0x89898989)
#define MEG1_FLASH_CODE ((accessType)0xB4B4B4B4)
#define MEG2_FLASH_CODE ((accessType)0xBDBDBDBD)

#define AMD_MAN_CODE ((accessType)0x01010101)
#define AMD_MEG1_FLASH_CODE ((accessType)0xA7A7A7A7)
#define AMD_MEG2_FLASH_CODE ((accessType)0x2A2A2A2A)

#define F256KBIT (0x40000/8)
#define F512KBIT (0x80000/8)
#define F1MBIT (0x100000/8)
#define F2MBIT (0x200000/8)
#define F4MBIT (0x400000/8)

/* Flash ROM command codes */
#define PROGcmd ((accessType)0x40404040)
#define ST_PROGcmd ((accessType)0xC0C0C0C0)
#define READcmd ((accessType)0x00000000)
#define ERASEcmd ((accessType)0x20202020)
#define ST_ERASEcmd ((accessType)0xA0A0A0A0)
#define IDcmd ((accessType)0x90909090)
#define RESETcmd ((accessType)0xFFFFFFFF)

Section 6: Code Examples

Flash EPROM programming tools

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide Revision 1.0 6-17

/* Access addresses */
#define CHARGEIT ((accessType *)0)
#define FlashBase 0xfe400000
#define FCtrlReg (*((volatile accessType *)FlashBase))
#define FManReg FCtrlReg
#define FDevReg (*((volatile accessType *)(FlashBase + NUM_ROMS)))

static unsigned RomByteSize;

/*
/* flashRomReset
/* Abort any programming of chip */
static void flashRomReset()
{
FCtrlReg = RESETcmd;
FCtrlReg = RESETcmd;
Fdelay(uSEC10);
FCtrlReg = READcmd;

}

/*
/* flashDevCode
/* -- Returns Device code from specific FROM */
static accessType flashDevCode(void)
{
register accessType devCode;

FCtrlReg = IDcmd;
devCode = FDevReg;
Fdelay(uSEC10);
FCtrlReg = READcmd;

return(devCode);
}

/*
/* flashManCode
/* -- Returns Manufacturers code from specific FROM */
static accessType flashManCode(void)
{
register accessType devCode;

FCtrlReg = IDcmd;
devCode = FManReg;
Fdelay(uSEC10);
FCtrlReg = READcmd;

return(devCode);
}

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Flash EPROM programming tools

6-18 V452 User Guide

/*
/* flashCodeCheck
/* -- Polls and displays I.D. codes from each byte lane
/* -- Verification will return status */

status flashCodeCheck(void)
{
accessType val;

/* default ROM size */
RomByteSize = F256KBIT;

val = flashManCode();
printf("Flash ROM Manufacture code:0x%x ... ",val);

switch(val)
{
case INTEL_MAN_CODE:
printf("INTEL\n");
break;

case AMD_MAN_CODE:
printf("AMD\n");
break;

default:
printf("Unexpected manufacturer code!\n");
return(ERROR);

}

val = flashDevCode();
printf("Flash ROM Device code: 0x%x ... ",val);

switch(val)
{
case AMD_MEG1_FLASH_CODE:
case MEG1_FLASH_CODE:
RomByteSize = F1MBIT;
break;

case AMD_MEG2_FLASH_CODE:
case MEG2_FLASH_CODE:
RomByteSize = F2MBIT;
break;

default:
printf("Unexpected Device code!\n");
return(ERROR);

}

printf("%d bit ROM\n\n... %d total bytes\n\n", RomByteSize*8, RomByteSize*NUM_ROMS);
return(OK);

}

Section 6: Code Examples

Flash EPROM programming tools

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide Revision 1.0 6-19

/* takeJmpOff
/* -- Prompts user to remove Vpp Jmpr that supplies programming voltage to PROMs
/* -- Returns only after removal of jumper */
void takeJmpOff(boolean isWait)
{
accessType val;

printf("\n\n--->Take out Vpp Jumper %s for FLASH ROMs<---\n", JMPR_STRG);
Fdelay(mSEC10);

if(isWait)
{
val = flashManCode();

while(flashManCode() == val)
Fdelay(mSEC10);

printf("What took so long?\n");
}

#ifdef V400
printf("\n--->Replace the Vcc Jumper at JK17 2-4<--- \n");

#endif
}

/*
/* doProgCmd
/* -- Called by QuickPulse to program Val to specific FROM address. Expects four byte lanes for 32bit access */
static status doProgCmd(accessType *pAddress, accessType Val)
{
if((unsigned)pAddress < FlashBase)
return(ERROR);

if((unsigned)pAddress > (FlashBase+RomByteSize*NUM_ROMS))
return(ERROR);

FCtrlReg = PROGcmd;
*pAddress = Val;
Fdelay(uSEC10);

FCtrlReg = ST_PROGcmd;
Fdelay(uSEC6);

if(*pAddress != Val)
return(ERROR);

return(OK);
}

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Flash EPROM programming tools

6-20 V452 User Guide

/*
/* getFlashData
/* -- initialize RAM with Flash Data to program /*

status getFlashData(accessType *daddr, int numbytes)
{
unsigned char *dAddr = (unsigned char *)daddr;
int i;

printf("Obtain Flash Data ");
/* write simple pattern to RAM */
for(i=0; i<numbytes; i++)
{
daddr[i] = (unsigned char)i;
if((i & 0x1FFF) == 0)
printf(".");

}

printf(" Done @ 0x%x\n", (unsigned)daddr);

return(OK);
}

/*
/* fGetchar
/* -- Get data to program to FROM */

static accessType fGetchar(accessType *caddr, int index)
{
return(caddr == CHARGEIT ? 0:caddr[index]);

}

/*
/* QuickPulse
/* -- Programming routine for Flash ROMs as derived from QuickPulse flowchart in Intel's Memory Manual
/* -- caddr == CHARGEIT will determine if the FROM s/b completely charged to accomadate QuickErase. Otherwise,
/* burn in the data at caddr.
/* -- bSize determines size of data. bSize == 0 defaults to size of FROM
*/
status QuickPulse(accessType *caddr, int bSize)
{
accessType *fAddress = (accessType *)FlashBase;
unsigned i=0,PlsCnt=0;
status Stat = OK;

if(caddr == CHARGEIT)
printf("Charge Flash ROM ");

else
printf("Programming Data ");

/* default to ROM size if 0 */
if(bSize == 0)
bSize = RomByteSize;

while((i < bSize) && (PlsCnt < 25))

Section 6: Code Examples

Flash EPROM programming tools

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide Revision 1.0 6-21

{
if(doProgCmd(&fAddress[i],fGetchar(caddr,i)) == OK)
{

/* Give active indication */
if((i & 0x1FFF) == 0)printf(".");
i++;
PlsCnt = 0;

}
else
PlsCnt++;

}

if(PlsCnt >= 25)
{
printf("\nFlash ROM programming error detected @ 0x%x!\n", &fAddress[i]);
flashRomReset();
Stat = ERROR;

}
else
printf(" Done\n");

FCtrlReg = READcmd;
return(Stat);

}

/*
/* QuickErase
/* -- Erase routine for Flash ROMs as derived from QuickErase flowchart in Intel's Memory Manual */

status QuickErase(void)
{
accessType *fAddress = (accessType *)FlashBase;
unsigned i=0,PlsCnt=0;
status Stat = OK;

if((Stat = QuickPulse(CHARGEIT,0)) != OK)
return(Stat);

printf("Erase Flash ROM ");
while((i < (RomByteSize)) && (PlsCnt < 3000))
{
FCtrlReg = ERASEcmd;
FCtrlReg = ERASEcmd;
Fdelay(mSEC10);

while(i < RomByteSize)
{
fAddress[i] = ST_ERASEcmd;
Fdelay(uSEC6);

if(fAddress[i] == (accessType)0xFFFFFFFF)
{

/* Give active indication */
if((i & 0x1FFF) == 0)printf(".");
i++;

}

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Flash EPROM programming tools

6-22 V452 User Guide

else
{
PlsCnt++;
break;

}
}

}

if(PlsCnt >= 3000)
{
printf("\nFlash ROM ERASE error detected @ 0x%x!\n", &fAddress[i]);
flashRomReset();
Stat = ERROR;

}
else
printf(" Done\n");

FCtrlReg = READcmd;
return(Stat);

}

/*
/* Fdelay
/* -- Simple delay routine to provide programming timeout routines
/* -- It should be obvious that this routine is sensitive to speed of board and processor! */

Fdelay(unsigned T)
{
unsigned i,j;

for(i=0; i<T; i++)
for(j=0; j<T; j++);

}

/*
/* flashDataVerify
/* -- Verify address pattern that should reside in FROMs after data programming */

static status flashDataVerify(accessType *vaddr, int bSize)
{
accessType *fAddress = (accessType *)FlashBase;
unsigned i,Verr = 0;

if(bSize == 0)
bSize = RomByteSize;

printf("Data verification ");
for(i = 0; i<bSize; i++)
{
if(fAddress[i] != vaddr[i])
{
if(Verr++ < 10)
printf("\n0x%x(0x%x) <> 0x%x(0x%x)", \
(unsigned)&fAddress[i], fAddress[i], (unsigned)&vaddr[i], vaddr[i]);

}

Section 6: Code Examples

Flash EPROM programming tools

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide Revision 1.0 6-23

/* Give active indication */
if((i & 0x1FFF) == 0)
printf(".");

}

if(Verr != 0)
{
printf("\n");
return(ERROR);

}

printf(" o.k.\n");
return(OK);

}

/*
/* Complete test for Flash ROMs
/*
/* -- Check Flash I.D. code(s)
/* -- Size Flash Rom(s)
/* -- Erase, then program incrementing pattern
/* -- Verify pattern
/* -- Erase and report status */

status doFlash(void)
{
accessType *cAddr;
int mptr;
status Stat;

printf("\n\n\n << FLASH ROM TEST for %s CPU boards >>\n", BRD_STRG);

printf("\n*** Check for proper codes ***\n");
if((Stat = flashCodeCheck()) != OK)
{
printf("\nCheck the Vpp (+12v) jumper %s\n", JMPR_STRG);
printf("to enable program mode for Flash Roms!\n\n");
return(Stat);

}

printf("*** Program, Verify and Erase Flash ROM ***\n");

/* Write incrementing pattern in RAM */
mptr = malloc(RomByteSize*NUM_ROMS + 0x10);
cAddr = (accessType *)((mptr + 0x10) & 0xFFFFFFF0);

if((Stat = getFlashData(cAddr, RomByteSize*NUM_ROMS)) == OK)
if((Stat = QuickErase()) == OK)
if((Stat = QuickPulse(cAddr,0)) == OK)
if((Stat = flashDataVerify(cAddr,0)) == OK)
if((Stat = QuickErase()) == OK)

takeJmpOff(FALSE);

printf("\n**********************\n");
if(Stat == OK)

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Flash EPROM programming tools

6-24 V452 User Guide

printf("*** FLASH ROM PASS ***\n");
else
printf("*** FLASH ROM FAIL ***\n");

printf("**********************\n");

free(mptr);
return(Stat);

}

/*
/* ramJet
/* -- Flash utility to burn data from pAddr into Flash ROM.
/* -- If bSize is 0, default to ROM size.
/* Return: status */

status ramJet(accessType *pAddr, int bSize)
{
status Stat;

if((Stat = flashCodeCheck()) == OK)
if((Stat = QuickErase()) == OK)
if((Stat = QuickPulse(pAddr,bSize)) == OK)
if((Stat = flashDataVerify(pAddr, bSize)) == OK)

return(Stat);
}

Section 6: Code Examples

Timer code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-25

Timer code examples

This assembly language code example shows the use of the 2692
counter/timer as a 10 ms interrupt timer, and the use of the 48T18
Calendar chip as a date and time reference.

Like most operating system drivers, this code maintains a time of day
value as a variable in RAM. Every 10 ms the timer interrupt service rou-
tine increments the time of day variable. At power up or reset, the time
of day variable is initialized from the time and date found in the 48T18
Calendar chip. The Calendar chip can itself be initialized by a special
call to the driver.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Timer code examples

6-26 V452 User Guide

00001 nam clock
00002 ttl Sig 2692
00003 psect clock,$C01,$a000,0,0,ClkEnt
00004 * This uses the 16 bit counter/timer in a Signetics 2692 to generate
00005 * the time slice interrupts. For initial date and time of day it uses a 48T18
00006 * Time Keeper calendar/clock chip with battery back-up.
00007
00008 fe280003 DUARTAdr equ $FE280003 ;DUART base address
00009 00000000 Bundle equ 0 ;=0 means serial & ctr/timer interrupts are bundled.
00010 0000001d ClkVect equ 29 ;Vector num for 2692 (bundled) interupt
00011 0000001b TimerVect equ 27 ;Vector number for separate Timer/ctr interrupt
00012 fe280003 ClkPort equ $FE280003 ;ctr/timer base address.
00013
00014 * Clock type: Sig2692 ; initialize for 10 ms intervals
00015 * some 2692 port offsets.
00016 00000003 MRA equ $03 ;mode register A
00017 00000007 SRA equ $07 ;Status reg./clk sel. reg. A
00018 0000000b CRA equ $0B ;command register A
00019 0000000f TRHA equ $0F ;xmit/rcv holding register A.
00020 00000013 ACR equ $13 ;Aux. control register/IPCR.
00021 00000017 IMR equ $17
00022 0000001b CTUR equ $1B ;MSB counter register.
00023 0000001f CTLR equ $1F ;LSB counter register.
00024 00000037 IOPC equ $37 ;INPUT/Output port config. register.
00025 0000003b SET equ $3B ;output bit set/ start ctr. command.
00026 0000003f RSET equ $3F ;output bit reset/ stop ctr. command.
00027 00000017 ISR equ IMR
00028 *
00029 00000008 IBIT equ 8 ;byte mask for clock bit in ISR and IMR.
00030 00384000 XTAL equ 3686400 ;The clock freq which is driving ctr/timer
00031 00000064 TicksSec equ 100 ;number of ticks per second
00032 00000480 Tck1 equ XTAL/16/2/TicksSec ;Value for cntr to produce 10 ms intervals.
00033
00034 *--
00035 * These symbols describe the 48T18 calendar/clock chip. It records date and
00036 * time in BCD 24 hour format. It also has 2k of nonvolatile RAM. See the
00037 * utility called StopOsc which can be used to stop the oscillator if one
00038 * anticipates not using the computer for a long time. Stopping the oscillator
00039 * prolongs the battery life. This program automatically restarts oscillator
00040 * if it discovers it has been stopped.
00041 *
00042 fe100000 CC_SRAM equ $FE100000 ;FWA of nonvolatile RAM in clock/calendar chip
00043 000007f8 CC_CTRL equ $7F8 ;Offset from CC_SRAM for control register
00044 000007f9 CC_SEC equ $7F9 ;The seconds byte.
00045 000007fa CC_MIN equ $7FA ;The minutes byte.
00046 000007fb CC_HR equ $7FB ;The hours byte.
00047 000007fc CC_DAY equ $7FC ;The day of week byte.
00048 000007fd CC_DATE equ $7FD ;The day of month byte.
00049 000007fe CC_MO equ $7FE ;The month byte.
00050 000007ff CC_YR equ $7FF ;The low 2 digits of year byte. (Hi 2 digits

assumed =19.
00051

Section 6: Code Examples

Timer code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-27

00052 00000040 RBit equ $40 ;The READ bit in the control register.
00053 00000080 WBit equ $80 ;The WRITE bit in the control register.
00054 00000080 StopBit equ $80 ;STOP bit in the seconds byte (stops oscillator).
00055
00057
00058 **
00059 * Entry point to clock initialization routine
00060 **
00061 * Subroutine ClkEntry
00062 * Clock initialization entry point. If the month specified
00063 * in the caller's input is zero, the system time and date
00064 * is set from the clock/calendar chip. Otherwise, the chip is
00065 * updated from caller's data.
00066 *
00067 * Passed: (a5)=points to caller's input parameters
00068 * R$d0.l(a5)=Time (00hhmmss)
00069 * R$d1.l(a5)=Date (yyyymmdd)
00070 * R$d2.l(a5)=Day of week (0=Sun, 1=Mon. etc.)
00071 * (a6)=points to variables in vsect (variable space) at end of listing.
00072 *
00073 * Returns: cc=carry set if there is an error. d1.w = error code.
00074 * The 2 32-bit packed "time" and "date" values referenced above are packed in binary
00075 * form, NOT BCD; "yyyy" represents a 16 bit binary integer. "dd" is an 8 bit
00076 * binary integer, etc.
00077
00078 0000=4a6e ClkEnt tst.w D_Tick(a6) ;is counter/timer already running?
00079 0004 664c bne.s ClkOn ;skip timer initialization if so
00080
00081 0006 1d7c move.b #TicksSec,D_Tick(a6);set tick = ticks/sec
00082 000c 4a7a tst.w Common(PC) ;Which clock int routine to use?
00083 0010 6608 bne.s Clk2
00084
00085 0012 41ee lea ClkSrv1(a6),a0 ;get address of bundled service routine
00086 0016 701d moveq.l #ClkVect,d0 ;get vector number
00087 0018=60ff bra.s clk3
00088
00089 001a 41ee Clk2 lea ClkSrv2(a6),a0 ;get address of separate timer int. routine
00090 001e 701b moveq.l #TimerVect,D0
00091 0020 e580 Clk3 asl.l #2,D0 ; multiply vector number by 4
00092 0022 2240 movea.l D0,a1 ;=interrupt vector address.
00093 0024 2288 move.l a0,(a1) ;point vector at clock service routine.

00094 0026 267c movea.l #ClkPort,a3 ;get the ctr/timer address
00095 002c 4a2b tst.b RSET(A3) ;stop the ctr/timer by reading the RSET port just to be safe.
00096 0030 177c move.b #(Tck1>>8),CTUR(A3) ;set upper byte of count.
00097 0036 177c move.b #($FF&Tck1),CTLR(A3) ;set lower byte of count.
00098 003c 177c move.b #$F0,ACR(A3) ;use set#2, timer mode with ext. clk/16
00099 0042 4a2b tst.b SET(A3) ;start the counter.
00100 0046 002e ori.b #IBIT,D_DuImr(a6) ;set IMR mask bit record in memory.
00101 004c 177a move.b D_DuImr(PC),IMR(A3) ;enable interrupt.
00102 *
00103 * When control gets here the counter/timer is running, generating 10ms
00104 * time slice interrupts. Now deal with date and time.
00105 0052 207c ClkOn movea.l #CC_SRAM,A0 ;Point A0 at beginning of nonvolatile RAM.

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Timer code examples

6-28 V452 User Guide

00106 0058=202d move.l R$d1(A5),d0 ;=user yr/mo/day
00107 005c e088 lsr.l #8,d0 ;lo byte = months number.
00108 005e 4a00 tst.b d0
00109 0060 6700 beq.w RdClk ;is the user spec. month =0? If so, read

time from clock.
00110
00111 * if control comes here, calendar/clock must be set from user-specified values.
00112 0064 117c move.b #RBit,CC_CTRL(A0) ;Read seconds byte to see if oscill is on.
00113 006a 1028 move.b CC_SEC(A0),D0
00114 006e 6a0a bpl.s Osc_On ;Jump if osc. isn't stopped.
00115
00116 0070 117c move.b #0,CC_CTRL(A0) ;It's stopped. Clear the W bit.
00117 0076 6100 bsr.w StartOsc ;This starts the oscillator.
00118 007a 117c Osc_On move.b #0,CC_CTRL(A0) ;Make sure the R & W bits are 0.
00119 0080=4ced movem.l R$d0(A5),D0/D1 ;Retrieve the user's specified time/date.
00120 0086 6100 bsr.w SetVar ;Set system time & date variables.
00121 008a 117c move.b #WBit,CC_CTRL(A0) ;Set the write bit to 1.
00122 0090 1400 move.b d0,d2 ;get seconds byte.
00123 0092 6100 bsr.w ToBCD convert byte in d2 to BCD.
00124 0096 1142 move.b d2,CC_SEC(A0) ;write to seconds byte.
00125 009a e088 lsr.l #8,d0
00126 009c 1400 move.b d0,d2 ;get minutes byte in d2.
00127 009e 6100 bsr.w ToBCD ;convert from binary 8 bit to 2 BCD digits
00128 00a2 1142 move.b d2,CC_MIN(A0) ;set minutes byte.
00129 00a6 e088 lsr.l #8,d0
00130 00a8 1400 move.b d0,d2 ;get hours byte
00131 00aa 6100 bsr.w ToBCD
00132 00ae 1142 move.b d2,CC_HR(A0) ;write hours byte.
00133 00b2 1401 move.b d1,d2 ;get day of month.
00134 00b4 6100 bsr.w ToBCD
00135 00b8 1142 move.b d2,CC_DATE(A0) ;set date.
00136 00bc e089 lsr.l #8,d1
00137 00be 1401 move.b d1,d2 ;get month number.
00138 00c0 6100 bsr.w ToBCD
00139 00c4 1142 move.b d2,CC_MO(A0) ;set month byte.
00140 00c8=2e2d move.l R$d2(a5),D7 ;get user specified day of week.
00141 00cc 1147 move.b d7,CC_DAY(A0) ;set day of week computed earlier.
00142 00d0 e089 lsr.l #8,d1
00143 00d2 927c sub.w #1900,d1 ;d1.w now = year from 0 to 99.
00144 00d6 1401 move.b d1,d2
00145 00d8 6100 bsr.w ToBCD
00146 00dc 1142 move.b d2,CC_YR(A0) ;Set year number.
00147 00e0 117c move.b #0,CC_CTRL(A0) ;clear Read and Write bits.
00148 *Time and date in calendar clock chip is now valid.
00149 00e6 7200 moveq.l #0,D1 ;make sure carry isn't set.
00150 00e8 4e75 ClocExit rts
00151
00152 * If control comes here, the clock must be read. First verify that the
00153 * oscillator is running.
00154 00ea 7e00 RdClk moveq.l #0,D7 ;clear D7. Used to flag if time valid.
00155 00ec 117c move.b #RBit,CC_CTRL(A0) ;Set the read bit.
00156 00f2 1028 move.b CC_SEC(A0),d0 ;Read seconds. MSB is osc. stop bit.
00157 00f6 6a32 bpl.s OscOn1
00158
00159 00f8 117c move.b #0,CC_CTRL(A0) ;osc. is stopped! So start it.

Section 6: Code Examples

Timer code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-29

00160 00fe 6100 bsr.w StartOsc ;This starts Osc., but time & date are almost
certainly wrong!

00161 0102 47ee ea.l Bad(a6),A3
00162 0106 43e8 lea.l CC_SEC(A0),A1 ;Point A1 to beginning of time/date registers.
00163 010a 117c move.b #WBit,CC_CTRL(A0)
00164 0110 7006 moveq.l #6,D0
00165 0112 13b3 BadDate move.b 0(A3,D0),0(A1,D0) ;Copy Jan. 1, 1901, 01:01 into clock.
00166 0118 51c8 dbf d0,BadDate
00167
00168 011c 7eff moveq.l #-1,d7 ;flag invalid time & date in d7.
00169 011e 117c move.b #0,CC_CTRL(A0)
00170 0124 117c move.b #RBit,CC_CTRL(A0) ;Put it back in the read mode.
00171 012a 7000 OscOn1 moveq.l #0,D0
00172 012c 2200 move.l d0,d1
00173 012e 2400 move.l d0,d2
00174 0130 1428 move.b CC_HR(A0),d2 ;Read the hours. This is 2 BCD digits.
00175 0134 6168 bsr.s FromBCD ;convert from BCD to 8 bit binary.
00176 0136 1002 move.b d2,d0
00177 0138 1428 move.b CC_MIN(A0),d2 ;Read minutes byte.
00178 013c 6160 bsr.s FromBCD
00179 013e e188 lsl.l #8,D0
00180 0140 1002 move.b d2,d0 ;Pack minutes byte into D0.
00181 0142 1428 move.b CC_SEC(A0),D2 ;read seconds digit.
00182 0146 6156 bsr.s FromBCD
00183 0148 e188 lsl.l #8,D0
00184 014a 1002 move.b d2,d0 ;Pack seconds into time. D0 =00hhmmss
00185 014c 1428 move.b CC_YR(A0),d2 ;Read years
00186 0150 614c bsr.s FromBCD
00187 0152 1202 move.b d2,d1
00188 0154 d27c add.w #1900,d1

00189 0158 1428 move.b CC_MO(A0),d2
00190 015c 6140 bsr.s FromBCD
00191 015e e189 lsl.l #8,d1
00192 0160 1202 move.b d2,d1 ;Pack months byte into d1.
00193 0162 1428 move.b CC_DATE(A0),d2 ;read the day of month
00194 0166 6136 bsr.s FromBCD
00195 0168 e189 lsl.l #8,D1
00196 016a 1202 move.b d2,d1 ;Pack day into D1. D1 = yyyymmdd
00197 016c 117c move.b #0,CC_CTRL(A0) ;Turn read mode off.
00198 0172 617e bsr.s SetVar ;Set system variables for mo, yr. day, etc.
00199 0174 4a87 tst.l d7 ;Is date invalid?
00200 0176 6b04 bmi.s CCBad
00201 0178 7200 moveq.l #0,d1 ;make sure carry isn't set
00202 017a 4e75 rts
00203
00204 017c=323c CCBad move.w #E$NotRdy,d1 ;Flag device not ready with hi byte =1.
00205 0180 0041 ori.w #$100,d1
00206 0184=003c ori.w #Carry,CCR ;User must specify time! Clock isn't set.
00207 0188 4e75 rts

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Timer code examples

6-30 V452 User Guide

00209 *************************************
00210 * Given a data byte in D2, convert it to 2 BCD digits in D2. Clobbers D3
00211 * in the process.
00212 *
00213 018a 0282 ToBCD andi.l #$FF,D2 ;Make sure hi bytes =0.
00214 0190 84fc divu.w #10,d2 ;Low word = quotient = tens digit.
00215 0194 2602 move.l d2,d3
00216 0196 e98a lsl.l #4,d2 ;shift quotient 4 bits left.
00217 0198 4843 swap d3 ;get remainder in low byte of d3.
00218 019a d403 add.b d3,d2
00219 019c 4e75 rts
00220
00221 **************************************
00222 * Given a 2 digit BCD value in D2.B, convert it to a 1-byte binary value in
00223 * D2.B. Clobbers D3.
00224 *
00225 019e 0282 FromBCD andi.l #$FF,d2
00226 01a4 2602 move.l d2,d3
00227 01a6 e88b lsr.l #4,d3 ;d3=tens digit.
00228 01a8 0242 andi.w #$0f,d2 ;d2=ones digit.
00229 01ac c6fc mulu.w #10,d3
00230 01b0 d443 add.w d3,d2
00231 01b2 4e75 rts
00232
00233 **************************************
00234 * This is called when it is discovered that the calendar/clock's oscillator
00235 * is not running. It starts it.
00236 *
00237 01b4 117c StartOsc move.b #WBit,CC_CTRL(A0) ;Enable write mode.
00238 01ba 117c move.b #0,CC_SEC(A0) ;Set stop bit to 0.
00239

00240 01c6 117c move.b #0,CC_CTRL(A0) ;Set write bit to 0.
00241 01cc 203c move.l #TicksSec*2,d0 ;=enough ticks for 2 seconds.
00242 01d2=4e40 bsr.w Pause ;Do system call to delay for 2 secs.
00243
00244
00245
00246 01e8 4e75 rts
00247 * Clock is now running, but it needs to be set.
00248
00249 * --
00250 * This table is used to set calendar to a default date.
00251 01ea 0001 Bad dc.b 0,1,1,0,1,1,1
00252
00253 **
00254 * This takes the date & time packed in format described above and sets
00255 * the system variables D_Year, D_Month, D_Day, D_Hour, D_Min, D_Sec
00256 * This assumes that D0 = 00hhmmss and D1 = yyyymmss. This means that the year
00257 * in D1 is a 16 bit binary number, month is 1 binary byte, etc. This is not BCD.
00258 * Leaves D0 & D1 unchanged.
00259 *
00260 01f2 1d41 SetVar move.b D1,D_Day(a6)
00261 01f6 e099 ror.l #8,D1

Section 6: Code Examples

Timer code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-31

00262 01f8 1d41 move.b D1,D_Month(a6)
00263 01fc e099 ror.l #8,D1
00264 01fe 3d41 move.w D1,D_Year(a6)
00265 0202 4841 swap D1
00266 0204 1d40 move.b D0,D_Sec(a6)
00267 0208 e098 ror.l #8,D0
00268 020a 1d40 move.b D0,D_Min(a6)
00269 020e e098 ror.l #8,D0
00270 0210 1d40 move.b D0,D_Hour(a6)
00271 0214 e098 ror.l #8,D0
00272 0216 e098 ror.l #8,D0
00273 0218 4e75 rts
00276 ********************************
00277 * Clock interrupt service routine for configuration with timer interrupting
00278 * in common with the other 2692 interrupts.
00279 *
00280 021a 48e7 ClkSrv1 movem.l D0/A3,-(A7) ;save registers
00281 021e 267c movea.l #DUARTAdr,A3 ;point at DUART
00282 0224 102b move.b ISR(a3),d0 ;ctr/timer causing Interrupt?
00283 0228 0200 andi.b #IBIT,D0
00284 022c 670e beq.s NotClk
00285
00286 022e 102b move.b RSET(a3),d0 ;"stop ctr" command clears the IRQ & doesn't stop the

timer.
00287 0232=6100 bsr ClkUpdate ;do clock functions such as increment time, etc.
00288 0236 4cdf movem.l (A7)+,D0/A3 ;recover saved registers
00289 023a 4e73 rte
00290
00291 023c 4cd7 NotClk movem.l (a7),D0/A3 ;recover the saved registers
00292 0240=4ef9 jmp S2692 ;jump to routine that handles the rest of the 2692

interrupts
00293
00294
00295 ********************************
00296 * Clock interrupt service routine for configuration with timer interrupting
00297 * separately from the 2692. It is not necessary for this routine to clear the
00298 * interrupt since the CPU hardware does that automatically.
00299 *
00300 0246 48e7 ClkSrv2 movem.l D0/A3,-(a7) ;save registers
00301 024a 267c movea.l #DUARTAdr,A3 ;point at DUART
00302 0250=6100 bsr ClkUpdate ;do clock functions such as increment time, etc.
00303 0254 4cdf movem.l (a7)+,D0/A3 ;recover saved registers
00304 0258 4e73 rte ;return from interrupt.
00305
00306 *
00307 ***
00308 *
00309 * This constant flags which interrupt routine is to be used.
00310 *
00311
00312 025a 0000 Common dc.w Bundle ;=0 means cntr timer & serial on same interrupt.
00313 * not 0 means timer is on a separate interrupt.
00314

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

Timer code examples

6-32 V452 User Guide

00315 ***
00316 * This is the variable section. These variables are referenced relative to
00317 * the A6 register.
00318 *
00319 vsect
00320 0000 0000 D_Year dc.w 0 ;These hold the year, month, day, etc. as specified

by user, or as read from clock
00321 0002 00 D_Month dc.b 0
00322 0003 00 D_Day dc.b 0
00323 0004 00 D_Hour dc.b 0
00324 0005 00 D_Min dc.b 0
00325 0006 00 D_Sec dc.b 0
00326 0007 00 D_Tick dc.b 0 ;=number of ticks/second
00327 0008 00 D_DuImr dc.b 0 ;Saved value of 2692 IMR (interrupt mask

register) byte.
00328 0000000a ends

Section 6: Code Examples

2692 DUART code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-33

2692 DUART code example

The C language code example given below provides sample coding for
implementing the two on-board serial ports via the 2692 DUART. For
more information, see the Timers & counters chapter in Section 4 and
the Asynchronous serial interface chapter in Section 5.

/*
DESCRIPTION
This is a sample driver for the Synergy V452 Series on-board serial interface.
It emphasizes the 2692-dependent aspects of the code and does not
include most of the OS dependent code.

There are four channels on the V452 Series board, port 0..3.
There are 2 UART Chips 0,2
There are 2 channels in each Chip 0,1

Port Chip Channel
 0 0 0
 1 0 1
 2 2 0
 3 2 1

IOCTL
This driver responds to the normal ioctl codes .
Most baud rates between 50 and 38.4K baud are available.
*/

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

2692 DUART code example

6-34 V452 User Guide

#define DEFAULT_BAUD 9600

#define N_SIO_CHANNELS 4 /* Number of serial I/O channels */

/* Local I/O address map */
#define V400_RES_BL ((char *) 0xfe28003f) /* first uart RESET register */
#define V400_S2692_A ((char *) 0xfe280003) /* first S2692 dual uart */
#define V400_S2692_B ((char *) 0xfe200003) /* second S2692 dual uart */

#define V400_DAUGHTER_LVL 4 /* level 4 interrupts */

/* Interrupt vector locations */
#define V400_TIMER_INT 30 /* autovector level 3 for system timer in uart A

*/
#define INT_VEC_S2692 29 /* autovector level 5 for both serial ports */

#define V400_S2692_ACR_VAL 0xe0 /* value to enable timer mode and baud table 1
*/

#define V400_TYC 1843200 /* 1/2 the crystal freq. on uart chips */

/* Signetics 2692 family definitions */
#define PORT_0 0
#define PORT_1 1

/* 2692 registers */
#define TY_MRA 0x0 /* 0 */
#define TY_SRA 0x4 /* 4 */
#define TY_CSRA TY_SRA
#define TY_CRA 0x8 /* 8 */
#define TY_THRA 0xc /* c */
#define TY_RHRA TY_THRA
#define TY_IPCR 0x10 /* 10 */
#define TY_ACR TY_IPCR
#define TY_ISR 0x14 /* 14 */
#define TY_IMR TY_ISR
#define TY_CTU 0x18 /* 18 */
#define TY_CTL 0x1c /* 1c */
#define TY_MRB 0x20 /* 20 */
#define TY_SRB 0x24 /* 24 */
#define TY_CSRB TY_SRB
#define TY_CRB 0x28 /* 28 */
#define TY_THRB 0x2c /* 2c */
#define TY_RHRB TY_THRB

/* reserved addresses in chip */
#define TY_INP 0x34 /* 34 */
#define TY_OPCR TY_INP
#define TY_STRT 0x38 /* 38 */
#define TY_SET TY_STRT
#define TY_STOP 0x3c /* 3c */
#define TY_RSET TY_STOP

/* 2692 commands */
#define TYC_ET 0x04 /* enable transmitter */
#define TYC_DT 0x08 /* disable transmitter */
#define TYC_MR 0x10 /* reset mode register pointer */

Section 6: Code Examples

2692 DUART code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-35

#define TYC_RC 0x20 /* reset receiver */
#define TYC_TX 0x30 /* reset transmitter */
#define TYC_SE 0x40 /* reset error status */
#define TYC_BC 0x50 /* reset break change */
#define TYE_RT 0x5 /* enable receiver and transmitter */

/* locals */
LOCAL int auxClkTicksPerSecond = 60;
LOCAL BOOL sysAuxClkRunning = FALSE;
LOCAL FUNCPTR sysAuxClkRoutine = NULL;
LOCAL int sysAuxClkArg;
LOCAL BOOL auxClkIsConnected = FALSE;

typedef struct /* TY_CO_DEV */
 {
 TY_DEV tyDev;
 BOOL created; /* true if device has really been created */
 char *tyUart; /* pointer to the uart structure */
 int tyChan; /* 0 for chan 0, non zero for chan 1 */
 } TY_CO_DEV;

LOCAL TY_CO_DEV tyCoDv [] = /* device descriptors */
 {
 {{{{NULL}}}, FALSE, V400_S2692_A, CHAN_0},
 {{{{NULL}}}, FALSE, V400_S2692_A, CHAN_1},
 {{{{NULL}}}, FALSE, V400_S2692_B, CHAN_0},
 {{{{NULL}}}, FALSE, V400_S2692_B, CHAN_1},
 };

typedef struct /* data for ioctl baud rate setting code to set
up 2692 rates */

 {
 int tyBaud; /* resulting baud rate */
 char tyBTable; /* 0=table 0, 1=table 1, 2=either table */
 char tyBValue; /* value to write to CSR[AB] */
 } TY_CO_BAUDS;

/* only support table 1 at this time
 the speeds commented out cannot be set up on one channel without some interaction
 on the other channel */

LOCAL TY_CO_BAUDS tyBaudList [] =
 {
 /* {50, 0, 0}, */

{75, 1, 0},
{110, 2, 0x11},
{134, 2, 0x22},
{150, 1, 0x33},

 /* {200, 0, 0x33}, */
{300, 2, 0x44},
{600, 2, 0x55},

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

2692 DUART code example

6-36 V452 User Guide

 /* {1050, 0, 0x77},*/
{1200, 2, 0x66},
{1800, 1, 0xaa},
{2000, 1, 0x77},
{2400, 2, 0x88},
{4800, 2, 0x99},

 /* {7200, 0, 0xaa},*/
{9600, 2, 0xbb},
{19200, 1, 0xcc},

 /* {38400, 0, 0xcc}, */
{0, 0, 0}, /* ends with record of zero's */

 };

/*************** tyCoHrdInit - initialize the usarts.********************************
* This routine initializes the on-board usarts. This routine must be called in supervisor mode. */

LOCAL VOID tyCoHrdInit ()
 {
 FAST int oldlevel; /* current interrupt level mask */

 oldlevel = intLock (); /* disable interrupts during init */
 tyCoResetChip (0); /* reset both ports of Chip */
 tyCoResetChip (2); /* reset both ports of Chip */

 intUnlock (oldlevel);
 }

/***********tyCoResetChip - reset a single uart chip, both channels **************/

LOCAL VOID tyCoResetChip (port)
 int port;
 {
 FAST char *cr = tyCoDv [port].tyUart; /* uart port base adr */
 int delay;

 cr[TY_IMR] = 0; /* clear mask register */
 cr[TY_CRA] = TYC_MR; /* reset mode reg pointer */
 cr[TY_CRA] = TYC_RC; /* reset receiver */
 cr[TY_CRA] = TYC_TX; /* reset transmitter */
 cr[TY_CRA] = TYC_SE; /* reset error status */
 cr[TY_CRA] = TYC_BC; /* reset break change */
 cr[TY_CRB] = TYC_MR; /* reset mode reg pointer */
 cr[TY_CRB] = TYC_RC; /* reset receiver */
 cr[TY_CRB] = TYC_TX; /* reset transmitter */
 cr[TY_CRB] = TYC_SE; /* reset error status */
 cr[TY_CRB] = TYC_BC; /* reset break change */
 cr[TY_SET] = 0xf7; /* clear output ,except timer output */
 cr[TY_IMR] = 0x33; /* enable tx and rx interrupts */
 cr[TY_ACR] = V400_S2692_ACR_VAL; /* use table 1 for baud rates */
 for (delay = 0; delay < 1000; delay++); /* pause to let chip recover from reset */
 }

/*****************tyCoInitPort - initialize a single port***************************/

LOCAL VOID tyCoInitPort (port)
 int port;

Section 6: Code Examples

2692 DUART code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-37

 {
 FAST TY_CO_DEV *pTyCoDv = &tyCoDv [port];
 FAST char *cr = pTyCoDv->tyUart; /* uart port base adr */
 FAST int oldlevel; /* current interrupt level mask */
 oldlevel = intLock (); /* disable interrupts during init */

 if (pTyCoDv->tyChan==0)
 {

cr[TY_CRA] = TYC_MR; /* reset mode reg pointer */
cr[TY_CRA] = TYC_RC; /* reset receiver */
cr[TY_CRA] = TYC_TX; /* reset transmitter */
cr[TY_CRA] = TYC_SE; /* reset error status */
cr[TY_CRA] = TYC_BC; /* reset break change */
cr[TY_MRA] = 0x12; /* 7 bits, no parity */
cr[TY_MRA] = 0x7; /* 1 stop, no rts, no cts */
cr[TY_CSRA] = 0xbb; /* rx at 9600, tx at 9600 */
cr[TY_CRA] = TYE_RT; /* enable both rec and tx */

 }
 else
 {

cr[TY_CRB] = TYC_MR; /* reset mode reg pointer */
cr[TY_CRB] = TYC_RC; /* reset receiver */
cr[TY_CRB] = TYC_TX; /* reset transmitter */
cr[TY_CRB] = TYC_SE; /* reset error status */
cr[TY_CRB] = TYC_BC; /* reset break change */
cr[TY_MRB] = 0x12; /* 7 bits, no parity */
cr[TY_MRB] = 0x7; /* 1 stop, no rts, no cts */
cr[TY_CSRB] = 0xbb; /* rx at 9600, tx at 9600 */
cr[TY_CRB] = TYE_RT; /* enable both rec and tx */

 }
 intUnlock (oldlevel);
 }

/******************tyCoIoctl - special device control*******************************
* This routine handles baud rate requests, and passes all other requests to tyIoctl. */

LOCAL STATUS tyCoIoctl (pTyCoDv, request, arg)
 TY_CO_DEV *pTyCoDv; /* device to control */
 int request; /* request code */
 int arg; /* some argument */

 {
 FAST int oldlevel; /* current interrupt level mask */
 FAST int baudConstant,i;
 FAST STATUS status;
 FAST char *cr; /* Uart register base adr */
 FAST TY_CO_BAUDS *baudData; /* pointer to baud data */

 switch (request)
{
case FIOBAUDRATE:

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

2692 DUART code example

6-38 V452 User Guide

/* look thru baud rate data list for entry == arg
*/

for(i=0;(tyBaudList[i].tyBaud != 0)&&(tyBaudList[i].tyBaud != arg);i++) ;
baudData = &tyBaudList[i];

/* arg not found in table */
if (baudData->tyBaud == 0)

{
status = ERROR; /* baud rate out of range */
break;
}

cr = pTyCoDv->tyUart;
/* disable interrupts during chip access */

oldlevel = intLock ();

if(pTyCoDv->tyChan)
{ cr[TY_CSRB] = baudData->tyBValue; }
else
{ cr[TY_CSRA] = baudData->tyBValue; }

intUnlock (oldlevel);

status = OK;
break;

default:
status = tyIoctl ((TY_DEV_ID) pTyCoDv, request, arg);
break;

}
 return (status);
 }

/*************************tyCoInt - interrupt level processing*****************************
* This routine handles interrupts from both of the Uarts
* read each chips status register to see if it need service, and do it. */

LOCAL VOID tyCoInt ()

 {
 FAST char *cr;
 FAST char intStatus;
 FAST TY_CO_DEV *pTyCoDv;
 FAST int i,chann;
 char outChar;

/* for each channel, check for
*either receive or transmit and service
* - if xmit and nothing to send then
* disable xmitter - if an error such as
* break, overrun, framing or parity, reset it */

Section 6: Code Examples

2692 DUART code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-39

 for (i=0;; i++)
 {

if(i>=NELEMENTS(tyCoDv))
{
/* done with uarts, now check timer in uart B */
intStatus = V400_S2692_B[TY_IMR];
if (intStatus & 0x8)

{
i = (char)V400_S2692_B[TY_STOP];
if (sysAuxClkRunning)

{
if (sysAuxClkRoutine != NULL)

(* sysAuxClkRoutine) (sysAuxClkArg);
}

}
break; /* done */

 }

pTyCoDv = &tyCoDv[i]; /* for channel i */
cr = pTyCoDv->tyUart; /* get uart addr */
chann = pTyCoDv->tyChan; /* get uart chann */

if(chann)
{ intStatus = cr[TY_SRB]; } /* get status */

else
{ intStatus = cr[TY_SRA]; } /* get status */

if(intStatus & 0x1) /* RxRDY */
{
if(pTyCoDv->created)

if(chann)
{ tyIRd(&pTyCoDv->tyDev, cr[TY_RHRB]); }
else
{ tyIRd(&pTyCoDv->tyDev, cr[TY_RHRA]); }

}
if(intStatus & 0x4) /* TxRDY */

{
if(pTyCoDv->created && (tyITx(&pTyCoDv->tyDev, &outChar) == OK))
{

if(chann)
{ cr[TY_THRB] = outChar; }
else
{ cr[TY_THRA] = outChar; }

}
else
{

if(chann)
{ cr[TY_CRB] = TYC_DT; } /* disable transmitter */
else
{ cr[TY_CRA] = TYC_DT; } /* disable transmitter */

}
}
if(intStatus & 0xf0) /* ERRORS */

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

2692 DUART code example

6-40 V452 User Guide

{
if(chann)
{ cr[TY_CRB] = TYC_SE; } /* reset error status */
else
{ cr[TY_CRA] = TYC_SE; } /* reset error status */

}
 }
}
/****************tyCoStartup - transmitter start-up routine*************************
* Call interrupt level character output routine. */

LOCAL VOID tyCoStartup (pTyCoDv)
 TY_CO_DEV *pTyCoDv; /* ty device to start up */
 {
 FAST char *cr;
 char outChar;

 cr = pTyCoDv->tyUart; /* get uart addr */

 if (tyITx (&pTyCoDv->tyDev, &outChar) == OK)
{
if(pTyCoDv->tyChan) /* chann 1 */
{

cr[TY_CRB] = TYC_ET; /* enable transmitter */
cr[TY_THRB] = outChar;

}
else /* chann 0 */
{

cr[TY_CRA] = TYC_ET; /* enable transmitter */
cr[TY_THRA] = outChar;

}
}

 }
/******************sysAuxClkDisable - turn off auxiliary clock interrupts**************/

VOID sysAuxClkDisable ()

 {
 V400_S2692_B[TY_IMR] = 0x33; /* turn off timer mask, leave both uarts */
 sysAuxClkRunning = FALSE;
 return(OK);
 }
/*******************sysAuxClkEnable - turn auxiliary clock interrupts on**************/

VOID sysAuxClkEnable ()
 {
 FAST unsigned int temp,sctps;
 sctps = auxClkTicksPerSecond;

 if (!sysAuxClkRunning)
{
V400_S2692_B[TY_ACR] = V400_S2692_ACR_VAL; /* set up counter mode for timer */

 /* preload the preload register */
temp = ((V400_TYC + (V400_TYC%sctps) + (sctps/2))/sctps);
temp &= 0xffff;
V400_S2692_B[TY_CTL] = temp & 0xff;

Section 6: Code Examples

2692 DUART code examples

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

V452 User Guide 6-41

V400_S2692_B[TY_CTU] = ((temp >> 8) & 0xff);

V400_S2692_B[TY_IMR] = 0x3b; /* enable interrupt mask */

sysAuxClkRunning = (char)V400_S2692_B[TY_STRT];/* start up counter */
sysAuxClkRunning = TRUE;
}

 }

000000000000000000000000111111
000000000000000000000000222222
000000000000000000000000333333
000000000000000000000000444444

Section 6: Code Examples

2692 DUART code example

6-42 V452 User Guide

V452 User Guide 7-1

Warranties
 & Service 7

This section contains information about product warranties and Synergy
customer service:

Warranty options

Customer service

7-2 V452 User Guide

Section 7: Warranties & Service

Warranty terms & options

V452 User Guide 7-3

Warranty terms & options

This chapter describes the warranty terms and options provided for the
V452 Series of boards.

Warranty terms
Synergy Microsystems, Inc. warrants all standard (off-the-shelf) and non-
standard (custom) products to be free of defects in materials and
workmanship under normal use for the applicable warranty period (as
described below). This limited warranty is void if the failure has resulted
from accident, abuse, alteration, or misapplication by the customer.

Product returns
The following guidelines describe warranty terms for product returns.

Initial product acceptance — Synergy presumes that customers
will inspect products within 14 days of receipt for conformance
to the specifications stated in this manual (for standard, off-the-
shelf units) and/or purchasing documentation (for custom units).
Products not rejected within this period are considered by
Synergy to be accepted by the customer.

Delivery rejection — Products that do not conform to the speci-
fications and standards in this manual or purchase documents
can be returned to Synergy for replacement/repair. Before
returning products, notify Synergy of the problem and get a
Return Material Authorization (RMA) number. Board rejection
will not be valid unless boards are returned in the original ship-
ping cartons within 10 days of the receipt of the RMA number.

Section 7: Warranties & Service

Warranty terms & options

7-4 V452 User Guide

For more information about returning products, see the next
chapter on Customer service.
If the customer adheres to these requirements, Synergy agrees to
pay shipping charges, otherwise shipment costs must be paid by
the customer.

Delivery turnaround after rejection — Synergy's service goal is
to return new or refurbished products within 14 days of the
receipt of properly rejected boards that were returned in
accordance with the requirements stated above and in next
chapter.

Product returns under warranty — Once products have been
either accepted or the initial product accept/reject period has
passed, products are warranted for the applicable warranty
period as described below:
For information about returning products under warranty, see
the next chapter on Customer service.

Warranty periods
Synergy Microsystems, Inc. offers the following warranty periods:

90-day guarantee and limited warranty — All standard (off-the-
shelf) and non-standard (custom) products are automatically
guaranteed for 90 days from the day of delivery.

1-year standard limited warranty — Customers who complete
payment for the product to Synergy within 30 days of delivery
receive a free warranty extension for a full year on all products
covered by the payment.

3-year extended limited warranty — If desired, Synergy offers an
extended 3-year warranty for an additional charge. The terms for
the extended warranty are identical to those listed above.

Section 7: Warranties & Service

Customer service

V452 User Guide 7-5

Customer service

Please contact Synergy Microsystems, Inc. if you have any questions,
comments, or suggestions. You can contact our customer service
department by writing or calling:

Synergy Microsystems, Inc.
9605 Scranton Rd., Suite 700
San Diego, CA 92121-1773
(858) 452-0020
(858) 452-0060 (FAX)

Reporting problems
If you encounter any difficulty with your V452 Series board, call
Synergy customer service. If possible, please have the following
information available to assist our staff in assessing your problem:

V452 Series model number (silk-screened on solder side of
board)

Serial number marked on solder side of board

V452 Series revision level (silk-screened on the solder side of
board)

ECO level (marked on solder side of board)

Revision level of the Monitor PROM.

Section 7: Warranties & Service

Customer service

7-6 V452 User Guide

Return policies and procedures
Should it become necessary to return a board to Synergy for repair,
please take the following steps.

❶ Call Synergy Microsystems, Inc. customer service for a Return
Merchandise Authorization (RMA) number. Use this number in
all communications regarding the problem boards.

❷ Provide the following information with all returned items:

V452 Series model number (solder side of the board)

Serial number (solder side of board)

V452 Series revision level (solder side of board)

ECO level (solder side of board)

Operating system and Revision level of the Monitor
PROM (or other PROM/EPROM used on your board)
The revision level is printed on the EPROM at location
UJ13.

Purchase order number and billing address if the board is
out of warranty.

Customer contact name, address, and telephone number

Complete description of the problem.

❸ Carefully package the board to protect it during shipment; be
sure that it is enclosed in an anti-static bag.

❹ Mark the RMA number on the shipping container.
❺ Send the board and the requested information prepaid to

Synergy at the following address:

Synergy Microsystems, Inc.
9605 Scranton Rd., Suite 700
San Diego, CA 92121-1773

An inspection and test charge will be applicable to all units returned for
repair, unless the unit is found to be defective and under warranty. If
the repair charge exceeds the inspection and test charge, we will notify
you of the repair charge. The test and inspection charge will be applied
to your repair charge. No repair (other than test and inspection) will be
performed on products that are out of warranty until we have received
your approval for the charges.

We appreciate your cooperation with these procedures. They help us
give you the best possible service.

V452 User Guide A-1

Appendix A,
Connectors & Cables

This appendix contains descriptions and diagrams of the V452
connectors and specialized cabling.

VMEbus connectors (P1 & P2)

EZ-bus connectors (P3 & P4)

Memory module connectors (P9, P10 & P11)

Ethernet 10Base-T connector (P8)

Asynchronous serial connectors (P5–P7)

Serial I/O cabling options

P2 serial interface option

A-2 V452 User Guide

Appendix A: Cables & Connectors

VMEbus connectors (P1 & P2)

V452 User Guide A-3

VMEbus connectors (P1 & P2)

The P1 through P2 connectors on V452 Series boards provide the
standard I/O interface to the VMEbus as listed in the table below:

Note The P2 connector shows the signals
Synergy has assigned to the user-defined
pins for rows A and C on the standard
VMEbus. Both of these rows are
connected to the P4 EZ-bus connector
listed later in this chapter.

Appendix A: Cables & Connectors

VMEbus connectors (P1 & P2)

A-4 V452 User Guide

VMEbus connector pinouts

VMEbus P1 VMEbus P2

Pin Row Z2 Row A Row B Row C Row D2 Pin Row Z1,2 Row A 1 Row B Row C1 Row D1,2

1 — D00 BBsy\ D08 — 1 (D30) (B32) +5V (A32) (E32)

2 Gnd D01 BClr\ D09 Gnd 2 Gnd (B31) Gnd (A31) (E31)

3 — D02 ACFail\ D10 — 3 (D29) (B30) reserved (A30) (E30)

4 Gnd D03 BG0In\ D11 — 4 Gnd (B29) A24 (A29) (E29)

5 — D04 BG0Out\ D12 — 5 (D26) (B28) A25 (A28) (E28)

6 Gnd D05 BG1In\ D13 — 6 Gnd (B27) A26 (A27) (E27)

7 — D06 BG1Out\ D14 — 7 (D25) (B26) A27 (A26) (E26)

8 Gnd D07 BG2In\ D15 — 8 Gnd (B25) A28 (A25) (E25)

9 — Gnd BG2Out\ Gnd SlIdp\ 9 (D22) (B24) A29 (A24) (E24)

10 Gnd SysClk BG3In\ Sysfail\ SlId0\ 10 Gnd (B23) A30 (A23) (E23)

11 — Gnd BG3Out\ BErr\ SlId1\ 11 (D21) (B22) A31 (A22) (E22)

12 Gnd DS1\ BR0\ SysRes\ +3.3V 12 Gnd (B21) Gnd (A21) (E21)

13 — DS0\ BR1\ LWord\ SlId2\ 13 (D18) (B20) +5V (A20) (E20)

14 Gnd Write\ BR2\ AM5 +3.3V 14 Gnd (B19) D16 (A19) (E19)

15 — Gnd BR3\ A23 SlId3\ 15 (D17) (B18) D17 (A18) (E18)

16 Gnd DTAck\ AM0 A22 +3.3V 16 Gnd (B17) D18 (A17) (E17)

17 — Gnd AM1 A21 SlId4\ 17 (D14) (B16) D19 (A16) (E16)

18 Gnd AS\ AM2 A20 +3.3V 18 Gnd (B15) D20 (A15) (E15)

19 — Gnd AM3 A19 — 19 (D13) (B14) D21 (A14) (E14)

20 Gnd IAck\ Gnd A18 +3.3V 20 Gnd (B13) D22 (A13) (E13)

21 — IAckIn\ SerClk(1) A17 — 21 (D10) (B12) D23 (A12) (E12)

22 Gnd IAckOut\ SerDat\(1) A16 +3.3V 22 Gnd (B11) Gnd (A11) (E11)

23 — AM4 Gnd A15 — 23 (D9) (B10) D24 (A10) (E10)

24 Gnd A07 IRQ7\ A14 +3.3V 24 Gnd (B9) D25 (A9) (E9)

25 — A06 IRQ6\ A13 — 25 (D6) (B8) D26 (A8) (E8)

26 Gnd A05 IRQ5\ A12 +3.3V 26 Gnd (B7) D27 (A7) (E7)

27 — A04 IRQ4\ A11 — 27 (D5) (B6) D28 (A6) (E6)

28 Gnd A03 IRQ3\ A10 +3.3V 28 Gnd (B5) D29 (A5) (E5)

29 — A02 IRQ2\ A09 — 29 (D2) (B4) D30 (A4) (E4)

30 Gnd A01 IRQ1\ A08 +3.3V 30 Gnd (B3) D31 (A3) (E3)

31 — -12V +5vStdby +12V Gnd 31 (D1) (B2) Gnd (A2) Gnd

32 Gnd +5V +5V +5V — 32 Gnd (B1) +5V (A1) —

Notes: 1. Pins in this row connect to the P4 EZ-bus connector pin indicated in parentheses. Space is provided in these
columns to write in the assigned signals, if desired. Refer to the applicable EZ-bus module User Guide for P2
pin assignments. Note that Module B’s (top board in stack) P2 pin assignments apply to the P2 connector on
the EZP2 adapter.

2. This row present only with optional wide (160-pin) VMEbus P1 & P2 connectors.

Appendix A: Cables & Connectors

EZ-bus connectors (P3 & P4)

V452 User Guide A-5

EZ-bus connectors (P3 & P4)

The P3 and P4 connectors provide an I/O interface between the V452
Series local bus and the Synergy EZ-bus for daughter modules.

Note Synergy offers a series of off-the-shelf
daughter modules or can custom-design
a board for quantity customers. For more
information on the available daughter
modules, see the EZ-bus interface
chapter in Section 5.

Appendix A: Cables & Connectors

EZ-bus connectors (P3 & P4)

A-6 V452 User Guide

EZ-bus connector pinouts

EZ-bus P3 EZ-bus P4 Row PD43

Pin Row A Row B Row C Pin Row A 1 Row B1 Row C Row D1,2 Row E1,2

1 D31 Write\ Gnd 1 (C32) (A32) Vcc (Z31) — —

2 D30 Clk BErr\ 2 (C31) (A31) Vcc (Z29) — Gnd

3 D29 Gnd Gnd 3 (C30) (A30) Gnd Line\ (D30) —

4 D28 Clk\ AVec\ 4 (C29) (A29) Gnd DBstIn (D29) DBstIn

5 D27 Reset\ RMC\ 5 (C28) (A28) Gnd (Z27) (D28) —

6 D26 Vcc Vcc 6 (C27) (A27) Gnd (Z25) (D27) —

7 D25 DS\ IAck\ 7 (C26) (A26) +12VF DBSnRq\\ (D26) —

8 D24 Gnd Gnd 8 (C25) (A25) -12VF Gnd (D25) Line\

9 D23 DSAck0\ BRq\ 9 (C24) (A24) A10 (Z23) (D24) DBSnRq\

10 D22 Vcc Vcc 10 (C23) (A23) A11 (Z21) (D23) —

11 D21 Siz1 DBdEn\ 11 (C22) (A22) A12 AColl- (D22)

12 D20 Gnd Gnd 12 (C21) (A21) A13 AColl+ (D21)

13 D19 AS\ MWDBd\ 13 (C20) (A20) A14 (Z19) (D20)

14 D18 Gnd DBCEn\ 14 (C19) (A19) A15 (Z17) (D19)

15 D17 Siz0 MWVME\ 15 (C18) (A18) A16 — (D18)

16 D16 Vcc Clash\ 16 (C17) (A17) A17 Gnd (D17)

17 D15 DSAck1\ B-DBdSel\ 17 (C16) (A16) A18 (Z15) (D16)

18 D14 Gnd B-Int\ 18 (C15) (A15) A19 (Z13) (D15)

19 D13 DBdSel\ B-MWDBd\ 19 (C14) (A14) A20 ERxD- (D14)

20 D12 Gnd B-IAck\ 20 (C13) (A13) A21 ERxD+ (D13)

21 D11 Int\ Gnd 21 (C12) (A12) A22 (Z11) (D12)

22 D10 Gnd B-DBdEn\ 22 (C11) (A11) A23 (Z9) (D11)

23 D9 A0 B-BRq\ 23 (C10) (A10) A24 — (D10)

24 D8 A1 B-IDEn\ 24 (C9) (A9) A25 Gnd (D9)

25 D7 A2 IDEn\ 25 (C8) (A8) A26 (Z7) (D8)

26 D6 A3 Freeze\ 26 (C7) (A7) A27 (Z5) (D7)

27 D5 A4 NoBak\ 27 (C6) (A6) A28 ETxD- (D6)

28 D4 A5 A32\ - BstAck\ 28 (C5) (A5) A29 ETxD+ (D5)

29 D3 A6 FC0 29 (C4) (A4) A30 (Z3) (D4)

30 D2 A7 FC1 30 (C3) (A3) A31 (Z1) (D3)

31 D1 A8 FC2 31 (C2) (A2) Gnd — (D2)

32 D0 A9 TAck\ 32 (C1) (A1) Gnd Gnd (D1)

Notes: 1. Pins in this row connect to the VMEbus P2 connector pin indicated in parentheses. Space is provided in these
columns to write in the assigned signals, if desired. Refer to the applicable EZ-bus module User Guide for P4
pin assignments. Note that Module B’s (top board in stack) P4 pin assignments apply to the P4 connector on
the EZP2 adapter.

2. This row present only with optional wide (160-pin) VMEbus P1 & P2 connectors.
3. PD4 row present only with standard 96-pin VMEbus P1 & P2 connectors.

Appendix A: Cables & Connectors

Memory module connectors (P9, P10 & P11)

V452 User Guide A-7

Memory module connectors (P9,
P10 & P11)

The P9, P10, and P11 connectors provide an interface between the
main V452 Series board and the detachable memory module boards.

Note Synergy offers memory module boards
containing 4, 8, 16, 32, 64, 128, 256* or
512* MB of DRAM. For more
information about memory modules, see
the Dynamic RAM chapter in Section 4.

* Special order item.

Appendix A: Cables & Connectors

Memory module connectors (P9, P10 & P11)

A-8 V452 User Guide

Memory module connector, P9 pinouts

Pin Function Pin Function
1 — 33 D10
2 — 34 D11
3 — 35 Vcc
4 — 36 Vcc
5 Gnd 37 D12
6 Gnd 38 D13
7 Byte0\ 39 D14
8 Byte1\ 40 D15
9 Byte2\ 41 Gnd
10 Byte3\ 42 Gnd
11 Vcc 43 D16
12 Vcc 44 D17
13 DPar0 45 D18
14 DPar1 46 D19
15 DPar2 47 Vdd
16 DPar3 48 Vdd
17 Gnd 49 D20
18 Gnd 50 D21
19 D0 51 D22
20 D1 52 D23
21 D2 53 Gnd
22 D3 54 Gnd
23 Vdd 55 D24
24 Vdd 56 D25
25 D4 57 D26
26 D5 58 D27
27 D6 59 Vcc
28 D7 60 Vcc
29 Gnd 61 D28
30 Gnd 62 D29
31 D8 63 D30
32 D9 64 D31

Appendix A: Cables & Connectors

Memory module connectors (P9, P10 & P11)

V452 User Guide A-9

Memory module connector, P10 pinouts

Pin Function Pin Function
1 — 33 A23
2 — 34 A22
3 — 35 Vcc
4 — 36 Vcc
5 Gnd 37 MClkD
6 Gnd 38 MClk
7 MA0 39 WShort\
8 MA1 40 RdDon\
9 MA2 41 Gnd
10 MA3 42 Gnd
11 Vcc 43 CasEn\
12 Vcc 44 CasEnD\
13 MA4 45 BLTCas\
14 MA5 46 BLTCasD\
15 MA6 47 Vdd
16 MA7 48 Vdd
17 Gnd 49 IncHld\
18 Gnd 50 Mux\
19 MA8 51 RasSS\
20 MA9 52 RasSX\
21 A31 53 Gnd
22 A30 54 Gnd
23 Vdd 55 BstHd\
24 Vdd 56 Rfsh
25 A29 57 RasEn\
26 A28 58 Ras\
27 A27 59 Vcc
28 A26 60 Vcc
29 Gnd 61 AS\
30 Gnd 62 WriteS\
31 A25 63 PreChg\
32 A24 64 —

Appendix A: Cables & Connectors

Memory module connectors (P9, P10 & P11)

A-10 V452 User Guide

Memory module connector, P11 pinouts

Pin Function Pin Function
1 Gnd 33 Gnd
2 Gnd 34 Gnd
3 Gnd 35 Gnd
4 Gnd 36 Gnd
5 Gnd 37 MSiz0
6 Gnd 38 MSiz1
7 Gnd 39 MSiz2
8 Gnd 40 MSiz3
9 Gnd 41 Vdd
10 Gnd 42 Vdd
11 Gnd 43 Vdd
12 Gnd 44 Vdd
13 — 45 Vdd
14 — 46 Vdd
15 — 47 Vdd
16 — 48 Vdd
17 Vcc 49 DSiz0
18 Vcc 50 DSiz1
19 Vcc 51 DSiz2
20 Vcc 52 DSiz3
21 Vcc 53 Gnd
22 Vcc 54 Gnd
23 Vcc 55 Gnd
24 Vcc 56 Gnd
25 Pres1 57 Gnd
26 Pres2 58 Gnd
27 Pres3 59 Gnd
28 Pres4 60 Gnd
29 Gnd 61 DSiz4
30 Gnd 62 DSiz5
31 Gnd 63 —
32 Gnd 64 —

Appendix A: Cables & Connectors

Ethernet 10Base-T connector (P8)

V452 User Guide A-11

Ethernet 10Base-T connector
(P8)

The V452 Series board’s optional Ethernet 10Base-T port connects to
the Ethernet 10Base-T network via the front panel jack as shown in the
figure below. This chapter lists the pinouts for this connector.

0 X

Ethernet
10Base-T Port

Serial I/O

V452

Ethernet
A

C
B/D

Ethernet 10Base-T port

Appendix A: Cables & Connectors

Ethernet 10Base-T connector (P8)

A-12 V452 User Guide

The figure and table below identify the pinout numbers and signals for
the Ethernet 10Base-T connector on the V452 front panel.

1357
2468

Ethernet 10Base-T connector pin numbering

Ethernet 10Base-T port (P8) pin assignments

Pin Function
1 Transmit Data+

2 Transmit Data–

3 Receive Data+

4 no connection

5 no connection

6 Receive Data–

7 no connection

8 no connection

Appendix A: Cables & Connectors

Asynchronous serial connectors (P5–P7)

V452 User Guide A-13

Asynchronous serial connectors
(P5–P7)

The V452 Series board’s four asynchronous serial ports connect to
external devices via 10-pin modular connectors as shown in the figure
below. This chapter lists the pinouts for these connectors.

0 X

Async Serial I/O
Ports (2692)

Serial I/O

V452

Serial Port A
RS-232/RS-422

Serial Ports B & D
RS-232 only

Serial Port C
RS-232/RS-422

Ethernet
A

C
B/D

Asynchronous serial I/O ports

Appendix A: Cables & Connectors

Asynchronous serial connectors (P5–P7)

A-14 V452 User Guide

The figure and table identify the pinout numbers and signals for the
Serial Port RJ-45 connectors on the V452 front panel.

1 3 5 7 9
2 4 6 8 10

Asynchronous serial connector pin numbering

Serial Ports A & C (P5, P7) pin assignments

Pin Function
1 Request to Send – (RTS+) differential RTS output signal for RS-422A communications.

2 Request to Send – (RTS) output indicating the modem is permitted to transmit data.

3 Transmit Data – (Tx+) differential transmit output signal for RS-422A communications.

4 Transmit Data – (Tx) output containing the data stream from the 2692.

5 Ground – (Gnd) internally connected to ground; connect to Signal Ground.

6 Ground – (Gnd) internally connected to ground; connect to Signal Ground.

7 Receive Data – (Rx) input containing the data stream from the modem.

8 Receive Data – (Rx+) differential Receive input signal for RS-422A communications.

9 Clear to Send – (CTS) input indicating the modem is ready to send data.

10 Clear to Send – (CTS+) differential CTS input signal for RS-422A communications.

Serial Ports B & D (P6) pin assignments

Pin Function
1 Port D, Request to Send – (RTS) output indicating the modem is permitted to transmit data.

2 Port B, Request to Send – (RTS) output indicating the modem is permitted to transmit data.

3 Port D, Transmit Data – (Tx) output containing the data stream from the 2692.

4 Port B, Transmit Data – (Tx) output containing the data stream from the 2692.

5 Ground – (Gnd) internally connected to ground; connect to Signal Ground.

6 Ground – (Gnd) internally connected to ground; connect to Signal Ground.

7 Port B, Receive Data – (Rx) input containing the data stream from the modem.

8 Port D, Receive Data – (Rx) input containing the data stream from the modem.

9 Port B, Clear to Send – (CTS) input indicating the modem is ready to send data.

10 Port D, Clear to Send – (CTS) input indicating the modem is ready to send data.

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-15

Serial I/O cabling options

As described in the last chapter, the V452 provides a front panel RJ-
50/RJ-69 modular jack for connection of the four serial channels.

A single modular cable in conjunction with a readily-available Modular-
to-D connector adapter connects either Serial Port A or Serial Port C, to
RS-232 or RS-422/RS-449 terminals and communications devices with a
DB-9, DB-25 or DB-37 serial connector. In this scheme a standard
modular cable is used to connect the V452 board’s modular connector
to the adapter and then the adapter routes the signal to the appropriate
pin on the D-type connector. Serial Ports B and D provide only RS-232.
A single cable/adapter can be connected to the B/D port to use only
Serial Port B.

The Modular-to-D connector adapters typically consists of an empty D
connector shell with an integral modular jack that has pigtails with D
pins crimped to them. The adapter is constructed by plugging the
appropriate pigtail pins into the correct D shell holes and then assem-
bling the adapter shell. The proper adapter wiring needed for various D-
type connectors and communications protocols are listed in a table
appearing later in this chapter.

To use both Serial Port B and Serial Port D, a special cable adapter is
required. Two types of serial cable adapters are available from Synergy:

RJ-50/RJ-69 to male DB-25/RJ-45 jack adapter

RJ-50/RJ-69 to dual RJ-45 jack adapter

A Modular-to-D connector adapter described above can be used to
connect the RJ-45 jack(s) to the RS-232 device(s) as required.

Appendix A: Cables & Connectors

Serial I/O cabling options

A-16 V452 User Guide

Using only Serial Port A, B, and/or C

Modular cable size

The front panel serial I/O modular jack accepts modular plugs of 4, 6
(Ports A and C only), 8 or 10 pins. The smaller plugs will center
themselves in the connector automatically as they are plugged in.
(Beware not to use an offset 8-pin plug made for Digital Equipment
Corp. computers.)

Various modular cables with the appropriate modular-to-D adapter will
provide connection to Serial Port A, B or C as shown in the table below.

Modular cable types vs. serial port configuration

Cable size RJ Type Serial Port Configuration
4-pin cable RJ-11 Serial ports A,, B, C: RS-232 Tx/Rx data, no handshake
6-pin cable RJ-14 Serial ports A, C: RS-422 Tx/Rx data, no handshake
8-pin cable RJ-45 Serial ports A, B, C: RS-232 Tx/Rx data, with handshake

(RTS, CTS)
10-pin cable RJ-50/RJ69 Serial ports A, B, C: RS-232 Tx/Rx data, with handshake

(RTS, CTS)
Serial ports A, C: RS-422 Tx/Rx data, with handshake
(RTS/RTS-, CTS/CTS-)

Note For maximum flexibility, it is possible, and
perhaps even advisable, to construct all
cables as the 10-pin variety. On a 10-pin
cable the V452 Series boards drives all
available signals.

When the other end of the cable is con-
nected to another V452 Series board, RS-
422, rather than RS-232, is automatically
used.

When the other end of the cable needs
to be connected to a device with a DB-9
or DB-25 connector, proper connections
for the desired protocol can be wired
into the Modular-to-D adapter described
below.

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-17

Building modular cables

This interface system is designed to work with commonly available
standard AT&T telephone cords. Four conductor modular cables,
commonly used for internal telephone wiring, are available at most
hardware and electronics stores. Cables can also be assembled to any
length using readily available materials.

When making modular cable, locate the raised rib on one side of the
flat cable wire. Insert the cable wire into the modular plug on both ends
of the cable with the rib facing the same way. This construction causes
the cable to have the necessary half-twist as specified in the AT&T
standard.

Note It is possible to use a plug with more pins
than the cable. Just make sure that the
connectors are inserted in the center
holes in the plug, rather than offset to
one side.

Note Unfortunately, several wiring color
schemes are currently in wide use for
modular cable and connector wiring. If
you have a cable or connector that uses
a different color scheme than the one
depicted in this procedure, use the
diagrams as locations guides only and
make the necessary adjustments in the
color assignments.

The paragraphs and diagram below describe how to construct an 8-
conductor modular cable using cable stock that adheres to the USOC
color scheme.

➊ Cut modular cable to required length and strip ends — Cut
cable stock to the required length. Strip off 1/2 inch of the gray
outer jacket from both ends of each cable using an 8-position
Modular Cable production tool (AMP Part# 1-231652-1 or
equivalent). Lay the cable on the work surface so that the rib on
gray jacket is face down and the wire color scheme (USOC) on
each end of the cable corresponds with that shown in the
diagram below:

Appendix A: Cables & Connectors

Serial I/O cabling options

A-18 V452 User Guide

Strip 1/2 inch of the gray jacket from each end
of cable.

Cut cable to the specified length.

Check to see that all wires have been cut, are
not shorted to any other wire, and that the

leading edge of all the wires together is straight

Brown
Blue
Yellow
Green
Red
Black
Orange
White

Brown
Blue

Yellow
Green

Red
Black

Orange
White

Strip modular cable

➋ Install Modular connector — Install an 8-pin modular cable on
the end of cable so that the release tab on the connector is UP
(i.e., on the opposite side from the ribbed side of the cable).
Check to see that all eight wires are fully seated in the modular
connector. Crimp on the 8-pin modular connector to both sides
of the cable using the modular cable production tool (AMP Part#
1-231652-1 or equivalent).

Install modular connectors with the Retaining
Clip UP. Check to see that the internal wires are

fully seated and flush inside the connector.
Then crimp connector on cable.

Install modular connector

➌ Verify connections — To do a quick visual check of the finished
cable, hold the two ends of the cable together with the
connectors pointing in the same direction with the retaining clip
on the modular connector facing up. When viewed in this
arrangement, either the White or Brown wire should next to
each other on each connector as shown in the diagrams below:

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-19

White wire
on inside

OR

Brown wire
on inside

Verify connections

Wiring Modular-to-D adapters

Modular-to-D adapters, which route signals from a modular cable to EIA
standard DB-9 or DB-25 connector, are available from various
electronic supply stores. The two tables on the facing page list the
appropriate pinouts for constructing adapters for various
communication protocols to act as both DCE and DTE devices:

The first four columns in each table refer to the number of pins
in the modular jack in the adapter to which a wire from a cable
is attached.

Note When plugging a 4-, or 8-pin plug into
the V452 board’s 10-pin modular
connector, there are two sizes of 4-pin
plugs; the telephone handset style will
not work. Use the telephone line cord
style of 4-pin plug. It is the same width as
the 6-pin plug.

The center column in each table, labeled Signal name, is the
signal names and abbreviations for the signals on the V452 serial
connector pinout.

Appendix A: Cables & Connectors

Serial I/O cabling options

A-20 V452 User Guide

The remaining columns in each table list the D-connector pins
for four different popular types of standard serial interfaces:

• The RS-423/RS-449 DB-9 is a seldom-used standard for
9-pin connectors.

• The IBM PC DB-9 lists the pinout for serial ports found
on typical IBM PC-compatible computers.

• The RS-232 DB-25 column in each table lists the pinout
needed to connect to the standard type of connector
found on video terminals, modems, etc.

• The RS-422/RS-449 DB-37 is a differential RS-422
interface, using a DB-37 connector. It is commonly used
on high-speed modems and other high-data-rate devices.

10-pin Modular-to-D null-modem adapter pinout
(for connection to a DTE device)

Modular connector (female) D-type connector (male or fem.)

4-pin 6-pin 8-pin 10-pin Signal name DB-9 DB-9 DB-25 DB-37
con. con. con. con. RS-423/ IBM PC RS-422/

RS-449 RS-232 RS-232 RS-449

— — — 1 Request-to-Send + (RTS+) — — — 25

— — 1 2 Request-to-Send (RTS) 7 7 4 7

— 1 2 3 Transmit Data + (Tx+) — — — 22

1 2 3 4 Transmit Data (Tx) 3 3 2 4

2 3 4 5 Ground (Gnd) 5 — — 19

3 4 5 6 Ground (Gnd) 9 5 7 20

4 5 6 7 Receive Data (Rx) 4 2 3 6

— 6 7 8 Receive Data + (Rx+) — — — 24

— — 8 9 Clear-to-Send (CTS) 8 8 5 9

— — — 10 Clear-to-Send + (CTS+) — — — 27

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-21

10-pin Modular-to-D modem adapter pinout
(for connection to a DCE device)

Modular connector (female) D-type connector (male or fem.)

4-pin 6-pin 8-pin 10-pin Signal name DB-9 DB-9 DB-25 DB-37
con. con. con. con. RS-423/ IBM PC RS-422/

RS-449 RS-232 RS-232 RS-449

— — — 1 Request-to-Send + (RTS+) — — — 27

— — 1 2 Request-to-Send (RTS) 8 8 5 9

— 1 2 3 Transmit Data + (Tx+) — — — 24

1 2 3 4 Transmit Data (Tx) 4 2 3 6

2 3 4 5 Ground (Gnd) 5 — — 19

3 4 5 6 Ground (Gnd) 6 5 7 37

4 5 6 7 Receive Data (Rx) 3 3 2 4

— 6 7 8 Receive Data + (Rx+) — — — 22

— — 8 9 Clear-to-Send (CTS) 7 7 4 7

— — — 10 Clear-to-Send + (CTS+) — — — 25

Note Many serial DB-25 devices use non-
standard pin assignments. If the wiring for
the RS-232/DB-25 adapter listed above
does not work, try shorting pin 6 (DTR)
to pin 20 (DCD) on the DB-25. If still not
successful, consult the device manual.

To use these tables, first decide whether you need a DTE or DCE
adapter and then locate the necessary interface type in the appropriate
table.

Note Remember that the DCE/DTE designa-
tion applies only to the adapter; the
device plugged into the adapter must be
of the opposite type.

Next, locate the size of the adapter in the first four columns of the table.
For example, for a 4-pin adapter, use the column headed by 4-pin con.
The pin numbers in this column are pin numbers on the adapter's mod-
ular jack, attached to the pigtails.

This modular jack’s pin 1 is the leftmost pin with the pins at the bottom
of the mating hole and the mating side away from the view; i.e. looking
at the pigtail end of the connector with the pigtails near the bottom.

Appendix A: Cables & Connectors

Serial I/O cabling options

A-22 V452 User Guide

Ignore the staggering of the pigtails; pin numbers increase from left to
right.

Plug each pigtail listed in the proper “adapter pin” column into the
numbered hole in the DB-9/DB-25 connector shell indicated in the
adapter type. For example, to make a 4-pin RS-232, DB-25, DCE
adapter:

1. Plug pigtail 4 into shell hole 3 (Tx Data).
2. Plug pigtail 1 into shell hole 2 (Rx Data).
3. Plug pigtail 3 into shell hole 7 (Gnd).
4. Insulate and leave unplugged pigtail 2 (unused).
5. Assemble connector shell.

Any pigtails from the modular jack that are not used should be insulated
with a 1" long piece of heat-shrink tubing or “spaghetti,” or may be cut
off flush with the adapter jack after the adapter is tested.

This procedure uses an EIA/Modular adapter kit containing a
trapezoidal-shaped connector shell with a molded-in, pre-wired modular
connector. The wires are typically color coded using the Nevada
Western wiring color scheme. A DB-25 connector completes the kit.
The flange of this connector snaps into the wider, open end of the
housing after wiring. This kit is available from various
electronic/computer supply houses.

Note Unfortunately, several wiring color
schemes are currently in wide use for
modular cable and connector wiring. If
you have a cable or connector that uses
a different color scheme than the one
depicted in this procedure, use the
diagrams as locations guides only and
make the necessary adjustments in the
color assignments.

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-23

➊ Install shrink-wrap insulation on unused pins — Cut three
lengths of 1/8" diameter heat shrink tubing approximately 3/4"
long. Pull out the modular connector/wiring harness from the
adapter shell. Slide the tubing over the metal end of the Brown
(pin 7), Red (pin 4), and Orange (pin 2) leads so that all metal
surfaces are covered as shown in the diagram below. Apply heat
to shrink the tubing so that it fits snugly on the lead.

Pin 1

Pin 8

Pin 7

Pin 2
Red

Orange

Brown

 (4)

 (2)

 (7)

8-pin Modular Connector
(rear view)

Heatshrink tubing
1/8'' diameter
3/4" long

Heatshrink tubing
1/8'' diameter
3/4" long

White
 (8)

Yellow
 (6)

Green
 (5)

Black
 (3)

Blue
 (1)

Insulating unused connector pins

➋ Construct a DTR-to-DCD loop back lead — Cut a 1 and 3/4 inch
section of the 8-conductor modular cable and remove the gray
outer jacket. Strip approximately 1/8 inch of insulation from
each side of one of the inner eight wires. Set aside the remaining
wires for use in construction of another adapter. Crimp on a pin
(AMP Part# 1-66506-0) onto each side of the wire using wire
crimping tool (AMP Part# 90312-1 or equivalent):

Strip 1/8" of insulation in from each end

Position pins on both ends of the wire as shown
then crimp pin onto wire

DTR-DCD loop back lead

Appendix A: Cables & Connectors

Serial I/O cabling options

A-24 V452 User Guide

➌ Install pins in DB-25 — Find the DB-25 connector in the Adapter
Kit. Insert the leads from the modular connector and the loop
back wire constructed in Step 2 as shown in the diagram and
listed in the table below. Use a pin insertion tool (AMP Part#
91067-2 or equivalent) to fully seat the pins in the DB-25
connector.

Pin
20

Blue
 (to 4)

Black
(to 2)

Yellow
(to 3)White

(to 5)

Green
(to 7)

Pin
4

Pin
6

Pin
3

Pin
5

Pin
7

Loopback
(6 to 20)

Pin
2

DB-25 Connector
(rear view)

RJ45 pin
1
2
3
4
5
6
7
8
—
—

Wire Color*
Blue

Orange
Black
Red

Green
Yellow
Brown
White

—
—

 DB-25 pin
4
NC - Heatshrink on wire
2
NC - Heatshrink on wire
7
3
NC - Heatshrink on wire
5
6 - Looped to DB25 pin 20
20 - Looped to DB25 pin 6

* Nevada Western Color code shown in table. Refer to RJ45
pin number if wiring on supplied modular jack uses a different
color scheme.

Interconnection list

DB-25 pin installation

➍ Assemble adapter shell — As shown in the drawing below, snap
the DB-25 connector into the adapter shell housing. Press the
DB-25 connector firmly into the housing so that all 4 housing
snaps engage the connector flange.

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-25

DB-25 Connector

DB25 Pin 1
toward this side

To assemble:
Snap DB-25 flange
into shell housing

RJ-45 Connector End

Trapezoidal-shaped
Adapter Shell

Shrink-tubed
wire ends (3 ea.)

Adapter shell assembly

Using dual serial port connector via Synergy
serial cable adapters
The use of both V452 serial ports B and D requires special cable
adapters that bring out the two serial ports from the single front panel
RJ-50/RJ-69 serial I/O jack. Two types of adapters are available from
Synergy (contact Customer Service for details on ordering these
adapters):

Part no. Cbl/J10J8D25M2m — RJ-50/RJ-69 plug to adapter head
containing one DB-25 male connector for Serial Port A and RJ-45
connector jack for Serial Port B. This adapter uses a 2-meter (standard
length) flat cable. A custom length can be ordered in which case the
last two characters in the cable part number will reflect the custom
length (e.g., “4m” for a 4-meter cable, Cbl/J10J8D25M4m).

Part no. Cbl/J10J8J81m — RJ-50/RJ-69 plug to adapter head containing
two RJ-45 connectors, one for each serial port. This adapter uses a 1
meter (standard length) round cable. A custom length can be ordered in
which case the last two characters in the cable part number will reflect
the custom length (e.g., “3m” for a 3-meter cable, Cbl/J10J8J83m).

Appendix A: Cables & Connectors

Serial I/O cabling options

A-26 V452 User Guide

Modular-to-D cable adapters of the 4- or 8-pin variety as described in
the Using only Serial Port A, B and/or C section can be used to
connect a serial device to the serial cable adapter’s RJ-45 jack(s).

The drawing below shows the Cbl/J10J8D25M2m cable and pin
assignments of the connectors on the peripheral end.

2 meters
(Overall Length, Standard)

RJ-50/RJ-69 Plug

RJ-45 Jack,
Serial Port B

DB-25 Plug,
Serial Port A

Flat cable

To SBC
RJ-50/RJ-69

Serial Port Jack

2 ea. Thumbscrews
(to secure to DB-25
socket connector)

Pin 1

2
3
4
5
6

720

1357
2468 1 2 3 4 5 6 7 8 9 10

(Contacts at Bottom)

View A-A View B-B
View C-C

View A-A
DB-25 Pin Connector

View B-B
RJ-45 Jack

View C-C
RJ-69 Plug

DTR-DCD
loopback

(connected to
pin 6)

Rx Data

Tx Data

CTS

RTS

DTR-DCD loopback
(connected to
pin 20)
Gnd

RTS

Tx
Data

CTS
Rx

Data

Gnd

Cbl/J10J8D25M2m serial cable adapter

Appendix A: Cables & Connectors

Serial I/O cabling options

V452 User Guide A-27

The drawing below shows the Cbl/J10J8J81m cable and pin
assignments of the connectors on the peripheral end.

1 meter
(Overall Length, Standard)

RJ-50/RJ-69 Plug

Dual RJ-45 Jacks

Round cable

To SBC
RJ-50/RJ-69

Serial Port Jack

1357
2468

View A-A View B-B

View A-A
Dual RJ-45 Jacks

View B-B
RJ-69 Plug

Port A Port B

1357
2468

RTS
Tx

Data

CTS
Rx

Data

Gnd

1357
2468

1 2 3 4 5 6 7 8 9 10
(Contacts at Bottom)

Cbl/J10J8J81m serial cable adapter

Appendix A: Cables & Connectors

Serial I/O cabling options

A-28 V452 User Guide

Appendix A: Cables & Connectors

P2 serial interface option

V452 User Guide A-29

P2 serial interface option

V452 Series boards can be optionally configured to present TxD and
RxD signals from asynchronous serial ports A and B to pins on the
board’s VMEbus P2 connector. This option is accomplished by
soldering small wires on the solder side of the board between the JL01
connector holes and the appropriate row holes for the P2 connector.

The user-assignable pins in Row A of the
VMEbus P2 connector on the V452
Series board are used by many of the
optional EZ-bus daughter modules that
are available for use with V452 Series
boards. As a result, implementation of
this modification may seriously limit
which daughter boards can subsequently
be used with the modified board. For
more information, see the P2 pinout
information for the prospective module
in the user guide for that module or
contact Synergy customer service.

Applying the modifications described in this chapter do not disable the
modular connectors for serial ports A and B on the front panel of the
board. Rather, this modification allows the port A and B serial I/O
signals to be accessible from EITHER the front panel OR the P2.
Attempting to use both of these access points at once could lead to
conflicts and other related problems and is therefore not recommended
for most applications.

Appendix A: Cables & Connectors

P2 serial interface option

A-30 V452 User Guide

The description of the modifications re-
quired to use this option are included in
this manual for convenience only.

Customers wanting this optional configu-
ration are strongly urged to have the
necessary modifications performed by
Synergy during the original manufacture
of the board or later as a factory rework.
For more information about having this
work done, contact Synergy sales or
customer service.

All modifications performed by cus-
tomers themselves are not covered by
Synergy’s warranty for the board. In
addition, if in the process of completing
this or any other modification, other parts
or areas of the board are damaged,
Synergy reserves the right to refuse to
perform repairs on these damaged com-
ponents or board areas under the terms
of the warranty as described in the next
section. Required repairs in this case will
be charged to the customer.

The steps below describe the procedure for performing the
modification (refer to the diagram below for locations of pins and
signals):

➊ Locate the JL01 and P2 connector holes on the solder side of
the V452 Series board.

➋ The TxD and RxD signals from serial ports A and B are provided
at JL01 pins 1–4. These signals can be wired to any P2 pin as
required by the application. Alternatively, JL01 1–4 can be wired
straight across to P2 pins A32–A29 respectively if there is no
conflict with an EZ-bus module using these pins (P4 pins B1–B4).
Connect the serial I/O signals to P2 using insulated 30 gauge
wire. Be careful not to inadvertently desolder the P2 connector
pins.

Appendix A: Cables & Connectors

P2 serial interface option

V452 User Guide A-31

DCBAZ

JL01

Port
A

CPU
Solder
side

EDCBA

P2

PD4

TxDB
RxDB
TxDA
RxDA

Port
B

JL01 serial signals shown connected to P2
pins A29-A32. However, any P2 pin can be
used as required by the application and/or
EZ-bus module installed on the SBC.

JL01, pin 1

P2 serial interface modification and pinout

Appendix A: Cables & Connectors

P2 serial interface option

A-32 V452 User Guide

V452 User Guide B-1

Appendix B,
Specifications

The V452 SBC conforms to the following set of specifications and
standards.

VMEbus compliance

IEEE 1014 VMEbus Specification; Rev C.1 & D.1

Master: A32,A24,A16/D32,D16,D08(EO):RMW
RWD,ROR,FAIR:UAT,
BLT32, BLT64.

Slave: A32,A24:D32,D16,D08(EO):RMW:UAT,
BLT32, BLT64.

Interrupter: I (1-7):D08(O):ROAK.

Interrupt handler: IH(1-7):D08(O).

Physical dimensions

The V452 printed circuit board conforms to VME 6U requirements
for form factor, board spacing, and board thickness:

Board Size: 6U: 6.4"x 9.19"x 0.8" minus front panel

Board Thickness: 0.062 +/- 0.005 inches or 15.24 +/- 0.51 mm

Weight

V452: 16 ounces (454g)

Weight (approx.) for dual CPU version with 16 MB memory module
and no EZ-bus daughter boards.

Appendix B

Specifications

B-2 V452 User Guide

Power requirements

V452 typical power consumption (w/16MB RAM, no EZ-bus
module installed):

V452 model (33 MHz, single ‘040 processor)
+5.0V ±5%, 3.38A typical @ 5.00V
-12.0V ±5% , 30 mA typical @ -12.00V

V452 model (33 MHz, dual ‘040 processor)
+5.0V ±5%, 4.10A typical @ 5.00V
-12.0V ±5% , 30 mA typical @ -12.00V

V452 model (50 MHz, single ‘060 processor)
+5.0V ±5%, 3.0A typical @ 5.00V
-12.0V ±5% , 30 mA typical @ -12.00V

V452 model (50 MHz, dual ‘060 processor,
+5.0V ±5%, 3.8A typical @ 5.00V
-12.0V ±5% , 30 mA typical @ -12.00V

Voltages must be kept within these tol-
erances to ensure proper operation.

Operating environment

Temperature: Operating: 0° to 50° C ambient with forced air
cooling (minimum 200 LFM; recommended
400 LFM.)

Non-operating/Storage: -20° to +70° C

Note Board configurations that provide a wider
operating temperature range are
available. Contact Customer Service for a
listing of Thermal Capability options.

Humidity: 10% to 90%, non-condensing

Number of slots

1

Appendix B

Specifications

V452 User Guide B-3

Board layout

See drawings below for V452 and memory module layout.

P1
P2

P3
 (E

Z-
bu

s
m

od
ul

e
co

nn
ec

to
r)

P4
 (E

Z-
bu

s
m

od
ul

e
co

nn
ec

to
r)

LE
Ds

Re
se

t
Ab

or
t

8-
Bi

t R
ea

da
bl

e
Sw

itc
h

P9
 (m

em
or

y
m

od
ul

e
co

nn
ec

to
r)

CP
U-

X

CP
U-

Y
(O

pt
io

na
l)

DI
P

EP
RO

M
/

Fl
as

h
M

od
ul

e
So

ck
et

s

FL
AS

H
(O

pt
io

na
l)

O
ut

lin
e,

 ty
pi

ca
l

EZ
-b

us
 M

od
ul

e

P1
0

(m
em

or
y

m
od

ul
e

co
nn

ec
to

r)

P1
1

(m
em

or
y

m
od

ul
e

co
nn

ec
to

r)

O
ut

lin
e,

 R
45

2/
R4

53
M

em
or

y
M

od
ul

e

JK
17

JK
12 PL

12

V4
52

 F
ro

nt
 P

an
el

Se
ria

l P
or

t J
ac

ks
10

Ba
se

-T

Ja
ck VM

Eb
us

 c
on

ne
ct

or
s

Bo
ar

d
St

iff
en

er
(O

pt
io

na
l,

si
ng

le

CP
U

on
ly

)

Cl
oc

k/
Ca

le
nd

ar
 B

at
te

ry

PD
4

V452 board layout

Appendix B

Specifications

B-4 V452 User Guide

R452 board layout

V452 User Guide C-1

Appendix C,
Board revision summary

This appendix summarizes major changes made to the V452 SBC and
memory modules affecting form, fit, and/or function. The paragraphs
below list the changes pertaining to the revision shown.

Note The revision levels for each feature repre-
sents the revision level when the listed
feature was added to the standard de-
sign. Some boards with older revision
levels may have had some of these fea-
tures added during previous rework/up-
grades.

Contact Synergy customer service for
upgrade information.

V452
These paragraphs describe changes made to the V452 main board.

Revision B Added slot ID register, improved clock signal integrity, various
ECO cleanup.

Revision A Initial board release.

R452 memory module
These paragraphs describe changes made to the R452 memory module.

Revision B Various ECO cleanup.

Revision A Initial board release.

Appendix C

Board revision summary

C-2 V452 User Guide

Glossary
C

A
B

V452 User Guide Glos-1

Glossary

The paragraphs below define and describe some of the terms used in
this manual. The definition entries observe the following conventions:

Terms in definitions that appear (in italics and in parentheses) are
related and/or alternative terms or acronym translations for the
term being defined.

Terms in definitions that appear in boldface in definitions are
defined elsewhere in the glossary.

10Base-T a type of Ethernet that uses unshielded twisted-
pair (UTP) cable and modular RJ-45 connectors
for LAN connections in a star configuration (i.e.,
each network node connects to a common hub).
Data rate is the same as standard Ethernet: 10
Mbps.

2692 a CMOS DUART chip manufactured by Signetics,
similar to the 2681 containing two asynchronous
serial communications ports and two
counter/timers.

48T18 a clock-calendar chip manufactured by SGS-
Thomson. It includes 8KB of non-volatile RAM
and a user replaceable battery.

A16/D16 specifies the address and data bus sizes for a
microprocessor bus such as VMEbus. This value
specifies a 16-bit wide address bus and 16-bit
wide data bus.

A16/D32 specifies a 16-bit wide address bus and 32-bit
wide data bus.

A24/D16 specifies a 24-bit wide address bus and 16-bit
wide data bus.

A24/D32 specifies a 24-bit wide address bus and 32-bit
wide data bus.

A32/D16 specifies a 32-bit wide address bus and 16-bit
wide data bus.

C

A
B

Glossary

Glos-2 V452 User Guide

A32/D32 specifies a 32-bit wide address bus and 32-bit
wide data bus.

ABORT an nmi interrupt (Level-7, autovectored) invoked
via a front panel push button. Used to terminate
run-away processes.

AM code bits (Address Modifier) code bits, AM0–AM5, used by
the VMEbus to identify the size of address being
expressed (A16, A24, A32, A40 or A64) and the
type of transfer (Address-only, program, data,
BLT32, BLT64 or IAck) being performed.

ATC (Address Translation Cache) used by the MMU to
speed up the translation process.

banner a message displayed on a CRT when a debug
monitor or operating system is starting.

base address the lowest address in range of addresses. Usually
the lowest address of a memory window, or of a
set of peripheral registers.

BCD (Binary Coded Decimal) a coding system in which
four binary (1s and 0s) digits represent each digit
in a decimal (0 through 9) value.

BLT (Block Transfer) a data transfer method for moving
large amounts (blocks) of data. A BLT cycle is
faster and more efficient than a regular R/W cycle
because the address to start the transfer of
multiple bytes is presented only once.

category 3 unshielded twisted-pair cable specification that
functions at 10 Megabits per second on each
pair.

category 5 unshielded twisted-pair cable specification that
functions at 100 Megabits per second on each
pair.

clock/calendar a device that records the progress of the time and
date and makes this information available to
programs running on the computer system.

Glossary
C

A
B

V452 User Guide Glos-3

CMOS (Complementary Metallic Oxide Semiconductor)
a method of integrated circuit manufacturing that
produces chips which require far less power and
in some cases work faster than MOS or other
devices produced using other manufacturing
technologies.

copyback A caching method that leaves dirty (updated) data
in the processor's data cache without writing it to
main memory until the cache line containing the
data is needed for new data.

CPU (Central Processing Unit) central controlling
device in a computer system.

CRT (Cathode Ray Tube) normally refers to a viewing
screen; also used as a synonym for terminal.

cycle stealing a bus management technique that allows a
peripheral device to temporarily disable CPU con-
trol of the bus to allow the device to directly
access the CPU's local memory.

data
broadcast

(data broadcasting) a bus communications
technique in which a single CPU board can send
data to multiple CPU boards at the same time.

DB-9 a D-shaped serial interface connector for I/O
cabling that provides access to up to 9 separate
lines or pins on a matching connector.

DB-25 a D-shaped serial interface connector for I/O
cabling that provides access to up to 25 separate
lines or pins on a matching connector.

DB-37 a D-shaped serial interface connector for I/O
cabling that provides access to up to 37 separate
lines or pins on a matching connector.

DCE (Data Communications Equipment) the end of a
serial communications link that is, or mimics, a
modem (Opposite of DTE).

C

A
B

Glossary

Glos-4 V452 User Guide

differential a method of signaling in which two wires are
used, each carrying opposite versions of the
signal information. This is done to increase
maximum cable drive and to increase noise
immunity. For example, a pair of signals are called
SD0+ and SD0-. A 1 data bit may be represented
by +5V on SD0+ and 0V on SD0-, and a 0 bit by
0V on SD0+ and +5V on SD0-. See single-ended.

dirty data Data in a cache that is newer than the data in
main memory.

DMA (Direct Memory Access) a data transfer method in
which data can pass between peripheral devices
without intervention by the CPU.

DRAM (Dynamic Random Access Memory) high density
fast access memory storage media that must be
refreshed at continuous intervals. Also simply
referred to as RAM

DTE (Data Terminals Equipment) the end of a serial
communications link that is, or mimics, a CRT ter-
minal or printer (Opposite of DCE).

DUART (Dual Universal Asynchronous Receiver/
Transmitter) see UART.

dual-ported a memory architecture which allows more than
one access path to memory.

dynamic RAM see DRAM.

EZ-bus a Synergy semi-proprietary interface for con-
nection of optional daughter modules to the main
V452 Series motherboard.

ECO (Engineering Change Order) an engineering doc-
ument that describes and orders a change to a
released product.

EPROM (Erasable Programmable Read Only Memory) a
special type of PROM whose programming can
be erased by exposure to ultraviolet light and
then reprogrammed.

Ethernet a high-speed (10 MB/sec) communications proto-
col and cable standard for computer networks.

Glossary
C

A
B

V452 User Guide Glos-5

FIFO (First-In-First-Out) a data storage technique in
which the first item stored in memory is also the
first item on the stack of items for retrieval. Also a
piece of hardware that stores data in such a man-
ner.

Flash memory a nonvolatile, random access, and rewritable
solid-state storage technology that is ideal for
field-upgradable code storage. Flash memory is
electrically erased and programmed in-circuit.

floating-point method to represent numbers using the signifi-
cant digits (mantissa) multiplied by the base of the
number raised to the appropriate power
(exponent). Values expressed in floating point
form are similar in structure to number expressed
in “scientific notation”.

FPU (Floating Point Unit) a floating point co-processor.

GPS receiver a radio receiver that locks onto the GPS (Global
Positioning System) satellites in orbit around the
earth. Using a GPS receiver, you can pinpoint
your exact location anywhere on earth and use
the GPS satellite’s onboard atomic clock as a time
reference.

GPIB (General Purpose Interface Bus) a parallel cable
bus usually used for controlling instruments.

IEEE P754 industry standard for floating point arithmetic.

IAck\ (Interrupt Acknowledge) a VMEbus signal used by
a Master to indicate the act of acknowledging an
interrupt.

IBM manufacturer of the Selectric typewriter and
inventor of the 80-column punched card.

IMR (Interrupt Mask register) A register used to enable
only certain interrupts.

interrupter a circuit that sources interrupts, usually at the
behest of peripherals. An interrupter must drive
an interrupt line and provide a vector number
during an interrupt acknowledge cycle. It may
cease driving the interrupt line upon the interrupt
being acknowledged (ROAK) or wait until a regis-
ter access to the peripheral explicitly removes the
request (RORA).

C

A
B

Glossary

Glos-6 V452 User Guide

interrupt
handler

a circuit (usually in conjunction with a CPU) that
acknowledges and handles interrupts.

I/O (Input/Output)

ISP (In-System Programmable logic) a high density
programmable logic device that can be
programmed while the device is in the circuit. ISP
logic can be upgraded easily in the field using a
standard PC and a simple adapter cable.

JEDEC (Joint Electronic Device Engineering Council) a
body that sets standards for chip packages and
pinouts.

LED (Light Emitting Diode) a diode that emits light
when forward biased, commonly used for
displays and indicators.

Level 1010
emulator

a group of opcodes currently unused in the
680X0 family, that may become real instructions
in future versions to the CPU. Until that time the
opcodes will produce a Trap to allow software to
emulate the instruction. The 1010 refers to the
first 4 bits of the opcode.

Level 1111
emulator

See Level 1010 emulator above.

mailbox mechanism to allow any CPU or other Master to
interrupt any other CPU of its choice.

Master a device that initiates and controls the transfer of
addresses and data across a bus. The opposite of
Slave.

mem protect (Memory protect) a bit that can be set or cleared
in the Mode register. It usually is set to disable
write accesses to the board and cleared to enable
them, but its meaning can be changed via PALs
or ISPs.

MMU (Memory Management Unit) a circuit that pro-
vides address translation and access control ser-
vices for a CPU.

MOS (Metallic Oxide Semiconductor) a method of inte-
grated circuit manufacturing.

µs (microsecond) one millionth (10-6) of a second.

Glossary
C

A
B

V452 User Guide Glos-7

ms (millisecond) one thousandth (10-3) of a second.

multi-ported a memory architecture in which the RAM can be
accessed from several busses.

MSB (Most Significant Bit)

NAN (Not A Number) possible result of a floating point
operation whose result is not defined as a
number (eg., arcsine 3).

nmi (Non-Maskable Interrupt) a level 7 interrupt. The
680x0 family of microprocessors treats level 7
interrupts as non-maskable.

ns (nanosecond) one billionth (10-9)of a second.

NVRAM (Non-Volatile RAM) RAM that retains its data even
without external power.

object code output from a compiler or assembler that is in
machine language but still must be linked to other
object code to form an executable program.

P1 the mandatory 96 pin VMEbus connector. It car-
ries all the signals to allow transfers up to A24
and D16. On a 3U board it is the only connector.

P2 the secondary 96 pin VMEbus connector on 6U
of 9U boards. 32 of is pins carry the signals nec-
essary to allow A32 and D32 transfers. The other
64 pins are user definable.

page the smallest unit of memory which is mapped by
the MMU.

PAL (Programmable Array Logic) integrated circuit con-
taining an array of binary logic gates whose
Boolean formula can be programmed or cus-
tomized. Often used for configuration applica-
tions.

prescaler a circuit that divides pulse train by a fixed num-
ber. The lower frequency output can then be
input to a programmable divider that couldn't
have handled the original input.

C

A
B

Glossary

Glos-8 V452 User Guide

PROM (Programmable Read-Only Memory) a memory
storage media that can be programmed using
electrical pulses. Once programmed, the PROM
is read-only but does not need power or refresh
in order to maintain the stored data.

RAM (Random Access Memory) memory that is high-
speed, randomly accessible (unlike a tape drive,
which is sequential) and can be read and written
to easily.

requester a circuit that requests Mastership of a bus.

read-modify-
write

see RMW.

RMA (Return Merchandise Authorization) a number
assigned by Synergy for returning defective
products.

RMW (Read-Modify-Write) a read memory access
followed by a write access performed in such a
way that no other access is allowed to the loca-
tion between the read and write.

ROAK (Release On AcKnowledge) a type of VMEbus
Interrupter module that deasserts its Interrupt
Request to the VMEbus during reception of a
valid IACK cycle for its interrupt level.

ROR (Release On Request) a requester strategy that
once granted the bus asserts continued
Mastership of the bus even if not currently
needed, until another requestor requests the bus.
Opposite of RWD.

RORA (Release On Register Access) a type of VMEbus
Interrupter module that deasserts its Interrupt
Request to the VMEbus during reception of a
VME slave access cycle to one of its (vendor-
specific) control registers.

round robin a bus sharing method that engages each device
or process in a group at its turn in a fixed cycle.

RS-232 an industry standard for serial communications
using ± 12V signals at up to 19.2 KB/sec for dis-
tances up to 50 ft.

Glossary
C

A
B

V452 User Guide Glos-9

RS-422 an industry standard serial communications using
differential signals at up to 100 KB/sec for dis-
tances up to 1000 ft.

RWD (Release When Done) a requester strategy that
once granted the bus asserts Mastership only as
long as actually needed. Opposite of ROR.

SBC (Single Board Computer) a printed circuit board
containing microprocessor and support devices
that provide CPU, ROM, RAM and peripheral
interfaces.

SCSI (Small Computer Systems Interface) an industry
standard parallel interface bus that provides host
computers with device independence of add-on
peripherals such as disk drives, tape drives, CD-
ROM drives, etc. The standard began as an 8-bit
parallel data interface with a max. transfer rate of
5 MB/S (SCSI-1). The next SCSI standard, SCSI-2,
introduced fast/wide SCSI. SCSI-2 is commonly
implemented with a 16-bit data bus with a max.
transfer rate of 10 MB/S (async) and 20 MB/S
(sync). The SCSI Trade Organization (STA) has
categorized several other SCSI types such as
Wide Ultra SCSI and Ultra2 SCSI. The T10
standards committee is working on the SCSI-3
standard which provides additional connector
and cabling options, protocol extensions, and
transmission schemes (high performance serial
and fiber data channel).

SDRAM (Synchronous Dynamic Random Access Memory)
a type of DRAM that operates in step with the
CPU clock which allows the processor to perform
more instructions over a given time.

single-ended a method of signaling in which one wire is used
per signal, referenced to a common Ground
signal. This is the most cost efficient signaling
method for short cable runs. See differential.

Slave a device connected to a bus that responds to
commands from a Master.

C

A
B

Glossary

Glos-10 V452 User Guide

spurious
interrupt

an interrupt whose acknowledge cycle received
no response. Usually caused by late
acknowledgment of periodic interrupters such as
timers. But may be caused by interrupt request
that was aborted before being acknowledged.

SRAM (Static Random Access Memory) a memory
storage media that needs no refresh cycle. SRAM
is faster and of lower density than DRAM.

stale data a copy of data that is no longer valid because
some processor or DMA activity has updated the
data elsewhere.

supervisor (supervisor mode) a Motorola processor
execution mode in which the CPU enjoys all its
privileges.

SysClk\ (System Clock) a signal driven by the system con-
troller to all boards of a VMEbus system.

SysFail\ (System Failure) a signal that can be driven by any
board of a VMEbus system. Traditionally used to
indicate a failure to one or more boards or de-
vices on a bus.

SysRes\ (System Reset) a signal driven by the system con-
troller to reset all the cards on the VMEbus.

system
controller

on VMEbus, a group of circuits on the #1 slot
VMEbus board that prioritize the bus-requests,
provide a system clock, and provide system
timeouts.

TrapV (Trap on oVerflow) a special TRAP instruction that
directs the CPU to begin exception processing if
the overflow bit of the CPU's status register is set.
Usually used to see if the previous arithmetic
operation overflowed the available bits of the
CPU’s registers.

triple-access (triple-access DRAM) see multi-port.

UART (Universal Asynchronous Receiver/Transmitter) a
device able to translate between parallel and an
asynchronous serial communications signals for
transmission and reception between a parallel
processor bus and a serial communications port.

Glossary
C

A
B

V452 User Guide Glos-11

VMX (VMEbus Memory eXpansion bus) an older ex-
pansion memory bus for the P2 connector. Has
been generally superseded by the VSB.

VSB (VMEbus Subsystem Bus) a fairly standard medium
performance method of accessing expansion
memory or peripherals via the P2 connector.

VMEbus (Versa Module Eurocard bus) a microcomputer
architecture whose physical and electrical
characteristics are defined in the IEC 821 and IEEE
1014-1987 specifications. The VMEbus supports
separate address and data lines of up to 32 bits
each. This bus uses a backplane in which VMEbus
modules are interconnected using DIN-41612
connectors.

watchdog an on-board timer that can automatically reset the
board if not accessed on a regular basis. Used to
reset the board in response to a software loop
and/or malfunction or a CPU halt.

window size the range of contiguous addresses that the board
responds to is called the window. The number of
addresses in the window is called the window
size. The board will respond to addresses from
base to base+window size.

word typically, a unit of data 16 bits in length.

writethrough A caching method that writes dirty (updated)
cache data to the main memory as soon as it is
updated by the processor.

WWV call letters for the National Bureau of Standards
radio station in Ft. Collins, Colorado. WWV
broadcasts technical services including timing sig-
nals, audio frequencies, and radio-propagation
disturbance warnings at the 2.5, 5, 10, 15, and 25
MHz carrier bands. Canada provides similar ser-
vices on CHU.

C

A
B

Glossary

Glos-12 V452 User Guide

Index
C

A
B

V452 User Guide Indx-1

Index

V452 Quick Index

R452
installation 2-13

V452
address map 3-4
block diagram 1-6
dimensions B-1
features

bus 1-8, 1-9
CPU 1-7
interrupts 1-9
memory 1-7
peripherals 1-10

hardware configuration 2-17-2-23
installation 2-7-2-11, 2-13
minimum system requirements 2-3
operating environment B-2
power requirements B-2
repair 7-6
revisions

levels C-1
rework/upgrades C-1
software and operating

systems 2-30-2-34
software configuration 2-35-2-51
VMEbus compliance B-1
voltages 2-4
warranty 7-3, 7-6
weight B-1

Main Index

10BASE-T
defined Glos-1

2692 3-15, 3-16
back-to-back protection 5-5
code example 6-33
defined Glos-1
serial port registers 5-4

2692 DUART 4-89, 4-91

27C010 2-7, 4-73

27C020 2-7, 4-73

27C040 2-7, 4-73

27C080 2-7, 4-73

28F010 2-7, 4-73

28F020 2-7, 4-73

48T02
defined Glos-1

68040 4-3-4-29
68040 RESET instruction 3-62
additional documentation 4-3, 4-4
addressing modes 4-14
bus snooping 4-24
caches 4-18-4-22

cache coherency 4-19
cache instructions 4-20
cache organization 4-18
setting up the instruction and data caches

4-21
using the transparent translation

register 4-29
data types 4-12
dual-68040 version

interrupt operations 3-11
exception processing 4-16-4-17

exception vectors 4-17
halt 3-33
instruction set 4-14, 4-15
MMU 4-27-4-29

MMU instructions supported 4-28
programming model 4-8-4-11
registers 4-8-4-11

68040/060
caches

configuration 2-39
using the Transparent Translation register

2-39

68060 4-31

C

A
B

Index

Indx-2 V452 User Guide

additional documentation 4-33
addressing modes 4-36, 4-37
bus snooping 4-45
caches 4-43

cache coherency 4-45
cache organization 4-44
invalidating the caches after BLT

transfers 5-64
reducing memory contention using 4-70
setting up the instruction and data

caches 4-45
using the transparent translation

register 4-46
data types 4-35, 4-36
dual-68060 version

counter operations 4-97
timer operations 4-93
watchdog (CPU) operations 4-61

exception processing 4-42
exception vectors 4-42

instruction set 4-37-4-38
PMMU 4-48
programming model 4-33

8 MB mode, setup 5-30

82C54 counter 4-89, 4-96

82C596 5-8

A32/A24 VME addressing, setup 5-24

ABORT 1-10, 3-14, 3-31
as an interrupt source 3-12
defined Glos-2
toggle (front panel) 3-31

access contention 5-32

ACFail 3-14

address map 3-3-3-6
access behavior 3-3
decoding 4-70

AM code bits
defined Glos-2

application LEDS, setup 2-44

arbiter (see-system controller)

arbitration
DRAM contention 4-69

ATC
defined Glos-2

back-to-back access
protection (2692) 5-5

battery, replacing (clock
calendar/SRAM) 4-106

BCD
defined Glos-2

BErr\ 5-66

block diagram
V452 1-6
68040 4-6
68060 4-32

BLT 4-63,5-62
block transfer strategy 5-54
master 5-53

invalidating the 68060 caches after a BLT
transfer 5-64

operational considerations 62
setting up a BLT read from VME 5-57-5-59
setting up a BLT write from VME 5-59-5-62
typical BLT cycle 5-56
using Counter2 (82C54) as a BLT

throttle 4-63, 5-63
code example 6-5

slave 5-33
use with MMU (see note) 5-57
using Counter2 (82C54) as a BLT throttle

99
using the MOVES instruction 5-55

board information registers 3-55

boot select jumper 2-25, 3-28,
3-63, 4-76

boot state 3-63
architecture 3-64

bus address
defined Glos-2

bus arbiter 5-66

bus error 5-32, 5-65
setting the bus error timeout

interval 5-67

Bus Request and Control register
(see—registers)

bus snooping 2-50

cables (see also—serial interface)
serial interface A-15

cache & data fetch, setup 2-39

category 3

Index
C

A
B

V452 User Guide Indx-3

defined Glos-2

category 5
defined Glos-2

Cbl/J10J8D25M2m, cable
adapter A-25

Cbl/J10J8J81m, cable
adapter A-25

clock (DUART)
source 4-92

clock/cal/NVRAM compatibility
mode, 2KB vs. 8KB (default
vs. extended) 4-101, 4-105

clock/calendar 4-101
calibrating 4-104
code example 6-25
defined Glos-2

CMOS
defined Glos-3

code examples
2692 counter/timer code 6-25
2692 DUART 6-33
BLT with DMA 6-5
clock/calendar 6-25
Flash EPROM programming 6-15

configuration
68040

setting up the instruction and
data caches 4-21

68040/060
setting up the instruction and

data caches 2-39
68060

setting up the instruction and
data caches 4-45

counters (82C54)
clearing counter interrupts 4-98
disabling the counter as an interrupt

source 4-98
enabling the counter as an interrupt

source 4-97
selecting the counter mode and

source 4-96
using Counter2 as a BLT throttle 4-99, 5-63

default hardware configuration 2-18
default software conditions 2-36
enabling serial ports B and D 2-44, 3-47
Flash memory

write enable/disable 2-20
hardware configuration 2-17-2-23

interrupts
enabling/disabling 2-42-2-43

LED 2-44
mailbox (CPU)

disabling the mailbox as an interrupt
source 4-54

enabling the mailbox as an interrupt
source 4-53

monitor PROM (EPROM)
Flash EPROM write enable/disable 4-75
start-up vectors 3-64
type selection 4-74

parity checking 2-45
serial interface

building modular cables A-17
wiring Modular-to-D adapters A-19

software configuration 2-35-2-51
system controller

configuring the bus arbiter 5-66
enabling the system controller 2-24, 5-66
selecting round robin or priority request

handling 2-23, 5-66
setting the bus error timeout interval 5-67

system terminal or console settings 2-29
timers (2692)

clearing timer interrupts 4-95
disabling the timer as an interrupt

source 4-94
enabling the timer as an interrupt

source 4-93
selecting the timer mode and source 4-92
setting the timer interrupt level 4-93

VME master interface
selecting FAIR or non-FAIR bus

requests 2-45, 5-49
selecting ROR or RWD bus releases 5-50
selecting ROR or RWD bus requests 2-45
setting the VMEbus request level 2-21,

5-47
VME slave interface

default conditions 5-22
enabling the VME Slave

interface 2-46, 5-31
enabling VME slave remote

reset 2-22, 5-23
selecting A32 vs. A24 VME

addressing 5-24
selecting the upper or lower VME

A32/D32 address range 2-48
selecting the window size and base

address 2-48, 5-27
selecting VME Slave characteristics 2-46,

5-22
setting the Slave memory protection level

2-47, 5-24

C

A
B

Index

Indx-4 V452 User Guide

VMEbus
enabling SysFail as an interrupt

source 2-43
suppressing the board’s VME SysFail 2-49

watchdog (CPU)
disabling all watchdog functions 4-61
enabling/disabling the watchdog 2-50
halt monitor 4-60
run monitor 4-59

connectors
P1 2-3

defined Glos-7
pinout A-3

P10
pinout A-7--A-10

P2 1-10, 2-4
defined Glos-7
pinout A-3
serial interface option A-29-A-31

P3 5-18
pinout A-5

P4 5-18
pinout A-5

P5-P8
pinout A-11, A-13

P9
pinout A-7-A-10

construction 1-8

contention 5-32

copyback (cache) (see also—
68060:caches)

counter/timer (see counters (82C54)
-or- timers (2692))

counters (82C54) 4-96-4-99, 5-63
clearing counter interrupts 3-18, 4-98
disabling the counter as an interrupt

source 4-98
enabling the counter as an interrupt

source 4-97
interrupts 3-18
selecting the counter mode and

source 4-96
using Counter2 as a BLT throttle 4-99,

5-63

CPU (see also—68040), (see also—
68060)

defined Glos-3

CPU mailbox (see—mailbox (CPU))

CPU watchdog (see—watchdog (CPU)

CPU watchdog, setup 2-50

CRT
defined Glos-3

customer service 7-6, C-1

cycle stealing
defined Glos-3

data broadcasting, setup 5-36, 5-37,
5-40

data broadcasts 5-35-5-45
defined Glos-3

daughter modules (see—EZ-bus)

DB-9
defined Glos-3

DbA / DbB 3-34

DCE
defined Glos-3

DELF/DEFL 4-76

differential
defined Glos-4

dimensions (board) B-1

DMA
defined Glos-4

DRAM 4-63-4-72
address decoding 4-70
BLT (see BLT)
contention 5-32
defined Glos-4
DRAM speed in dryhstones 4-65
memory access contention 4-69
parity checking 4-65-4-69

clearing the parity error bit 4-68
detecting & isolating bad parity 4-68
enabling/disabling 2-43, 4-66
enabling/disabling parity error

interrupts 4-66
tuning to CPU speed 4-64

DRAM initialization 2-45

DRAM, setup 2-45

DTE
defined Glos-4

dual-CPU version
start-up vectors for CPU-X and

CPU-Y 3-64

Index
C

A
B

V452 User Guide Indx-5

dual-CPU, dual-68040 (see—68040)

dual-port
defined Glos-4

DUART (see 2692)
defined Glos-10

ECO
defined Glos-4

EPROM (see also—monitor PROM
(EPROM))

defined Glos-4

EPROM boot enable jumper 2-25,
3-28, 3-63, 4-76

EPROM/Flash boot select, setup 2-25

Ethernet
defined Glos-4

Ethernet interface 5-13
Address map 5-13
CSMA/CD 5-11
Data transmission 5-9
Ethernet ID 5-11
Ethernet network connections 5-9
Interchange signals 5-12
Introduction 5-7

exceptions (CPU) (see—68040:
exceptions)

Extended Mode register (see—
registers)

EZ-bus 4-69, 4-71, 5-15, 5-20
as reset source 3-62, 3-63
connectors 5-18

pinout A-5
custom modules 5-18
DbA & DbB LEDs 3-34
defined Glos-4
interrupts 3-17
pinout warning 2-4

Fail (see—LED: Fail)

FIFO
defined Glos-5

Flash
block organization (Flash Module option)

4-82
block organization (onboard Flash) 4-86
booting from onboard Flash 4-87
considerations when using 4-77, 4-83

EPROM 4-75
Flash module option (DEFL/DELF) 4-79
Flash module, accessing the 4-82
Flash module, installing the 4-80
onboard Flash memory 4-85

Flash memory
defined Glos-5

Flash write enable/disable, setup 2-20

floating-point
defined Glos-5

FPU
defined Glos-5

front panel layout 3-29

fuses, ratings & locations 3-35

GPIB
defined Glos-5

GPS receiver
defined Glos-5

group address 5-35

halt (CPU) (see also—68040: halt -or-
watchdog (CPU): halt
monitor)

halt monitor 4-60-4-61

hardware configuration (see
configuration)

humidity specification B-2

I/O
defined Glos-6

IAck 5-65
defined Glos-5

IBM
defined Glos-5

ID switch (software readable) 3-30

ID switch register (see—registers)

IEEE P754
defined Glos-5

IMR
defined Glos-5

initialization
monitor PROM start-up vectors 3-64

C

A
B

Index

Indx-6 V452 User Guide

installation
V452 Series board installation

system terminal or console settings 2-29
installing a monitor PROM 2-7-2-11
installing the R452 memory

module 2-13
minimum system requirements 2-3

operational warning when using a card
cage with 6-layer PCBs 2-3

Interrupt control register (see—
registers)

interrupt handler (see also—VMEbus:
interrupt handler)

defined Glos-6

interrupter (see also—VMEbus:
interrupter)

defined Glos-5

interrupts 1-9, 3-7
ABORT (nmi Level 7) 3-12
ACFail 3-14
configuration

enabling/disabling interrupts 3-9
counters (82C54) 3-18

clearing counter interrupts 3-18, 4-98
disabling the counter as an interrupt

source 4-98
enabling the counter as an interrupt

source 4-97
CPU exceptions 4-17, 4-42
enabling/disabling interrupts 2-42-2-43
EZ-bus 3-17
Interrupt Control register

address locations (listed) 3-10
enabling VMEbus interrupts 3-20

Level 7 (maskable) 3-13
local bus timeout 3-19
mailbox (CPU) 4-52, 4-53-4-54

disabling the mailbox as an interrupt
source 4-54

enabling the mailbox as an interrupt
source 4-53

maskable Level 7
enabling the SysFail interrupt 2-43

non-steerable interrupt sources 3-12
on-board interrupts 3-12-3-18
parity 3-14
serial interface 3-16
single vs. dual-68040 3-11
steerable interrupt sources 3-11
timer

configuring for Level 6 3-48

timer (2692) 3-15
timers (2692)

clearing timer interrupts 3-15, 4-95
disabling the timer as an interrupt

source 4-94
enabling the timer as an interrupt

source 4-93
setting the timer interrupt level 4-93

vectors 3-7
VME SysFail 3-14

enabling the SysFail interrupt 2-43

ISP
defined Glos-6

ispPAL
interrupt steering function 3-8

JEDEC
defined Glos-6

jumpers 3-25-3-27
boot select 4-76
EPROM configuration (JK12) 4-74
Flash write protect 4-75
JK11 (Flash EPROM write enable), 2-10
JK12 (PROM type selection), 2-10, 3-26
JK17 3-26

enabling Flash write 2-20
enabling VME slave remote reset 2-22
EPROM/Flash boot select 2-25
selecting round robin or priority request

handling 2-23
setting the VMEbus request level 2-21
system controller force disable 2-24

JK17 jumper location diagram 2-19
JK27 2-18

enabling the System Controller 5-66
enabling the VME slave remote reset 5-23
setting the VMEbus request level 5-48

jumper functional summary 3-26
jumper location diagram 2-8, 3-26, 4-74
jumper setting summary 3-27

LED 3-32
0 - 7 (application) 3-33
controlling the User LEDs 3-42
CPU status (Halt/Fail) 3-33
CPU-X 3-34
CPU-Y 3-34
DbA 3-34
DbB 3-34
defined Glos-6
Ethernet 3-34
Mst 3-34
Slv 3-34
turning on and off 2-44

Index
C

A
B

V452 User Guide Indx-7

Level 1010
defined Glos-6

Level 1111
defined Glos-6

local bus timeout 3-19

M48T18 4-101, 4-102

mailbox (CPU) 3-18, 4-51-4-55
defined Glos-6
interrupts 4-53-4-54

disabling the mailbox as an interrupt
source 4-54

enabling the mailbox as an interrupt
source 4-53

read area 4-52
write area 4-51

master (see VMEbus — master
interface)

defined Glos-6

memory access contention 4-69

memory module 4-72
connector pinouts A-7
installation 2-13

memory protection
configuration 2-47
defined Glos-6

MMU (see—68060: MMU)
defined Glos-6
use during BLT transfers (see note) 5-57

mode registers 3-40, (see—registers)

monitor PROM (EPROM) 4-73, 4-76
as boot PROM after reset 3-64
Flash EPROM programming code sample

6-15
Flash EPROM write enable/disable 2-10,

4-75
installation 2-7-2-11
location of PROM sockets on board 2-8
OS-9 2-30
pSOS/Probe 2-32
start-up banners 2-30-2-34
start-up vectors 3-64
SMon 2-34
type selection 2-10, 4-74
VxWorks 2-32

MOS
defined Glos-6

MOVES
use during BLT transfers 5-55

µs
defined Glos-6

ms
defined Glos-7

MSB
defined Glos-7

Mst 3-34

multi-port
defined Glos-7

multi-ported memory
access contention 5-32
self-references to on-board memory 5-32

NAN
defined Glos-7

nmi
defined Glos-7

non-volatile RAM (NVRAM) (see—
SRAM (non-volatile))

ns
defined Glos-7

NVRAM 4-105
defined Glos-7

object code
defined Glos-7

operating environment B-2

operating systems 2-30-2-34
OS-9 2-30
pROBE.jr 2-32
SMon 2-34
VxWorks 2-32

P1, P2, etc., (see connectors)

PAL
defined Glos-7

parity 4-65
errors 3-14

peripherals 1-10

physical address (Ethernet) 5-11

physical configuration 1-5

C

A
B

Index

Indx-8 V452 User Guide

power
consumption 2-4
power supply 2-4
requirements B-2

power-cycle
as reset source 3-61

power-on banners 2-30

prescaler
defined Glos-7

Primary Mode register (see—registers)

priority (VMEbus request arbitration)
(see—system controller)

priority request/round robin,
setup 2-23

pROBE.jr 2-32

programming differences (from earlier
model SBCs) 6-3

PROM (see also—monitor
PROM(EPROM))

defined Glos-8

R452/R453 4-72

registers (V452 Series) 3-37
board information 3-55
Bus Request and Control register

disabling the CPU watchdog halt monitor
2-50

selecting FAIR or non-FAIR bus
releases 2-45

selecting ROR or RWD bus
releases 2-45

Control registers 3-50
extended 3-51
primary 3-51

default conditions 3-59
Ethernet/VMEbus control 3-55
Extended Control register

disabling the halt monitor 4-60
enabling the halt monitor 4-60
selecting FAIR or non-FAIR bus

requests 5-49
selecting ROR or RWD bus releases 5-50
VME master interface functions 5-48

Extended Mode register
enabling the Slave interface 2-49, 5-31
enabling/disabling the CPU watchdog run

monitor 2-51
turning LEDs on and off 2-45

ID switch register 3-39
Interrupt control 3-52
Interrupt Control register

address locations (listed) 3-10
clearing counter (82C54) interrupts 4-98
clearing timer (2692) interrupts 4-95
disabling a counter (82C54) as an interrupt

source 4-98
disabling a timer (2692) as an interrupt

source 4-94
enabling a counter (82C54) as an interrupt

source 4-97
enabling a timer (2692) as an interrupt

source 4-93
enabling VMEbus interrupts 3-20
enabling/disabling interrupt sources 2-42,

2-43, 3-9
enabling/disabling parity error

interrupts 4-66-4-67
Mode registers 3-40

extended 3-41
primary 3-41

Primary Mode register
configuring Slave memory protection 5-24
enabling/disabling parity

checking 2-43, 4-66
enabling/disabling parity error

interrupts 2-45
setting the Slave memory protection

level 2-47
suppressing the VME SysFail signal 2-49
turning LEDs on and off 2-45

Slave Interface control 3-54
Slave Interface Control register

configuring Slave memory protection 5-24
selecting A32 vs A24 addressing 2-46, 5-24
selecting the upper or lower VME

A32/D32 address range 2-48
selecting the window size and base

address 2-48, 5-27
Status register 3-38

reporting parity errors 4-67

remote reset 5-23

remote reset register 3-67

repair 7-6

requester (see—VMEbus : requester)
defined Glos-8

RESET 3-31, 3-33, 3-61
68040 RESET instruction 3-62
boot state 3-63
EZ-bus 3-62
hardware 3-63

Index
C

A
B

V452 User Guide Indx-9

remote 3-62
sequence 3-63
software 3-62, 3-65
sources 3-61, 3-62
toggle (front panel) 3-31

revisions
main board (V452) C-1
memory module C-1

rework/upgrades C-1

RMA 7-6
defined Glos-8

RMW
defined Glos-8

ROAK
defined Glos-8

ROR 5-50
defined Glos-8

RORA
defined Glos-8

round robin (VMEbus request
arbitration) (see—system
controller)

defined Glos-8

round robin/priority request,
setup 2-23

RS-232
defined Glos-8

RS-422
defined Glos-9

RWD 5-50
defined Glos-9

SBC
defined Glos-9

SCSI
defined Glos-9

SDRAM
defined Glos-9

serial cable adapters A-25

serial interface 5-3-5-6
2692 registers 5-4
building modular cables A-17
cables and adapters A-15
code example 6-33
connector pinouts (P5-P8) A-11, A-13

enabling serial ports B and D 2-44, 3-47
interrupts 3-16
P2 interface option A-29-A-31
wiring Modular-to-D adapters A-19

serial ports B and D, setup 2-44

single-ended
defined Glos-9

slave (see VMEbus — slave interface)
defined Glos-9

Slave Interface Control register (see—
registers)

Slave interface, setup 5-31

Slv 3-34

SMon 2-34

sockets
UG13/UJ13 (EPROM) 4-73

software configuration (see—
configuration)

software reset 3-65

software-readable switch (see—
switches: ID switch)

specifications
dimensions B-1
environmental B-2
power B-2
power requirements B-2
weight B-1

spurious interrupt
defined Glos-10

SRAM
defined Glos-10

stale data (cache) (see also—
68060:caches)

defined Glos-10

start-up banners 2-29

start-up vectors 3-64, 4-76

Status register (see—registers)

supervisor
defined Glos-10

switches
ABORT toggle 3-31
ID switch (software-readable) 3-30

C

A
B

Index

Indx-10 V452 User Guide

RESET toggle 3-31
as reset source 3-61

SysClk\
defined 10

SysFail (see also—VMEbus : SysFail)
defined Glos-10

SysRes\
defined Glos-10

system controller 5-65
configuring the bus arbiter 5-66
defined Glos-10
enabling the system controller 2-24, 5-66
selecting round robin or priority request

handling 2-23, 5-66
setting the bus error timeout

interval 5-67

system controller, setup 2-23,
2-24, 5-66

temperature requirements B-2

timeout
local bus 3-19

timers (2692) 4-91
clearing timer interrupts 4-95
code example 6-25
disabling the timer as an interrupt

source 4-94
enabling the timer as an interrupt

source 4-93
interrupts 3-15
selecting the timer mode and

source 4-92
setting the timer interrupt level 4-93
timer operations 4-92

TRAPV 4-17, 4-42
defined Glos-10

UART
defined Glos-10

V440/V460 and V452, comparing the
differences 1-11

vectors 3-5

video display terminal 2-5

VME 6U B-1

VME interrupt level, setup 3-22

VME interrupt vector, setup 3-23

VME interrupts, setup 2-42

VME Level 0 interrupt reset 3-65

VME master interface (see—VMEbus :
master interface)

VME master interface,
setup 2-45, 5-47

VME slave interface (see—VMEbus :
slave interface)

VME slave remote reset, setup 2-22,
5-23

VME SysFail interrupt, setup 5-68

VME SysRes, setting up respond
to/ignore 3-66

VME64 extensions 1-9

VMEbus 1-8, 2-21, 2-22, 4-69
ACFail 3-14
arbiter (see-system controller)
bus error timeout (see—system controller)
compliance B-1

interrupt handler B-1
interrupter B-1
master interface B-1
operational warning when using a card

cage with 6-layer PCBs 2-3
slave interface B-1

connectors (on-board)
pinout A-3

defined Glos-11
interrupter 3-22, 3-49
interrupts 1-9, 3-19, 3-49

interrupt handler 3-19
VMEbus interrupt sequence 3-19

master interface 5-47-5-51
bandwidth 5-51
Mst LED 3-34
selecting FAIR or non-FAIR bus requests 2-

45, 5-49
selecting ROR or RWD bus releases 5-50
selecting ROR or RWD bus requests 2-45
setting the VMEbus request

level 2-21, 5-47
requester 5-50
slave interface 5-21-5-33

configuring Slave memory protection 2-47,
5-24

data broadcasting option 5-35-5-45
default conditions 5-22
enabling remote reset 2-22, 5-23

Index
C

A
B

V452 User Guide Indx-11

enabling the VME Slave
interface 2-46, 5-31

selecting A32 or A24 addressing 5-24
selecting A32 vs A24 addressing 2-46
selecting the upper or lower VME

A32/D32 address range 2-48
selecting the VME Slave

characteristics 2-46, 5-22
selecting the window size and base

address 2-48, 5-27
self-references to on-board memory 5-32
Slv LED 3-34

SysFail 3-14, 3-33
enabling and disabling reception of 3-48
enabling the SysFail interrupt 2-43
suppressing the VME SysFail signal 49

SysRes 3-33
as reset source 3-61
asserting a VME system reset 3-22, 3-61

VMEbus request level, setup 2-21,
5-47

VMX
defined Glos-11

voltages 2-4, B-2

VSB interface 4-59
defined Glos-11

VxWorks 2-32

warranty 7-3, 7-6

watchdog (CPU) 4-57, 4-61
as reset source 3-62
configuration 2-50
defined Glos-11
disabling all watchdog functions 4-61
halt monitor

disabling the halt monitor 4-60
enabling the halt monitor 4-60

run monitor 4-58-4-59
disabling the run monitor 4-59
enabling the run monitor 4-59
holding off a reset 4-58, 4-59

watchdog timer enable reset 3-66

weight B-1

window size (see also—VMEbus : slave
interface)

defined Glos-11

word
defined Glos-11

writethrough (cache) (see also—
68060:caches)

WWV
defined Glos-11

C

A
B

Index

Indx-12 V452 User Guide

